Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
Over the past 100 years, about half of Minnesota’s original 22 million acres of wetlands have been drained or filled. Some regions of the State have lost more than 90 percent of their original wetlands. The National Wetland Inventory, a program initiated in the 1970s, is an important tool used at all levels of government and by private industry, non-profit organizations, and private landowners for wetland regulation and management, land management and conservation planning, environmental impact assessment, and natural resource inventories.
The purpose of this project is to gather data specific to developing a site-specific standard for phosphorus for Upper and Lower Red Lakes. These are large shallow lakes that are located in an area where no shallow lake standard exists. Because of these lakes' unique characteristics, it is believed that a site-specific standard is more appropriate than the deep lake standards that currently exist. This project will include additional chemistry and flow monitoring of tributaries to the lakes, as well as outflow of Lower Red Lake to the Red Lake River.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
The main outcome of the project will be the development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
The main outcome of the project will be development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
The goal of this project is to gather and collect necessary watershed data for the development of a Watershed Restoration and Protection Strategy (WRAPS) for the Upper/Lower Red Lakes Watershed that includes impairments, their causes, and plans for restoration. Implementation of the WRAPS will maintain or improve water quality for the watershed.
This project is for the editing the draft Watershed Restoration and Protection Strategy (WRAPS) and Total Maximum Daily Load (TMDL) reports resulting from comments received from Minnesota Pollution Control Agency and U.S. Environmental Protection Agency staff, preparing the documents for public notice, assisting with responding to public comments and preparing the final documents for final federal and state approval.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
Wolf survival and predation in summer are almost unknown but critical to deer, moose, and wolf, management. We'll study wolf predator-prey ecology, share charismatic natural history, and promote Voyageurs' region.
Wetlands in large lakes in the Voyageurs National Park area have been degraded by invasive cattails, which reduces biodiversity, degrades fish/wildlife habitat, and outcompetes wild rice/manoomin. Phases 1&2 of the project entailed refinement of restoration methods. We will continue mechanical treatment methods in Phase 3 to remove invasive cattails and other vegetation, including use of contracted harvesting machines, NPS owned-cutting machines, and hand crews in more inaccessible areas.
This proposal seeks to prevent nitrate contamination in and around vulnerable Non-Community (Transient and Non-Transient) Public Water Supplies within the sandy outwash plains of the Mississippi River in Central Minnesota. Within the work area we have identified 221 public (non-municipal) water supplies in this area which include places of worship, restaurants, office spaces, bars, daycares and campgrounds within the Morrison and Benton County work area.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
Vermilion Community College will assist the Minnesota Pollution Control Agency (MPCA) with meeting the Watershed Restoration and Protection Strategies (WRAPS) development objectives of collecting data and completing watershed assessments for the Rainy River Headwaters, Vermilion River, and Little Fork River watersheds. Services will include providing support for field water monitoring, other field sampling and measurements and related field data management, analysis, and assessments in these watersheds.
This proposal will fund technical assistance for nutrient management planning to accelerate water quality improvements with the 12-county West Central Technical Service Area (WCTSA). A needs assessment identified an estimated 156 certified nutrient management plans that will be needed over a 3 year period. Of the 71 SWCD employees in the WCTSA, only 1 SWCD staff member is dedicated to nutrient management planning. To meet technical assistance needs, this grant will fund a Regional Planning Specialist (RPS) to address local resource concerns.
The West Central Technical Service Area (WCTSA) serves 12 Soil and Water Conservation Districts (SWCDs) in west central Minnesota and has been experiencing increased workload due to greater requests from member SWCDs. This funding will sustain a limited-term technician and purchase related support equipment to assist landowners in implementing targeted, high priority practices that result in the greatest water quality outcomes.
Increasing wildfires in Minnesota are mobilizing mercury and degrading water in wilderness lakes, potentially causing increased mercury concentrations in fish. We will develop approaches to protect our lakes and fish.
This program acquired, developed, and added 638 acres to the state Wildlife Management Area (WMA) system. These lands protect habitat and provide opportunities for public hunting, trapping and compatible outdoor uses consistent with the Outdoor Recreation Act (M.S. 86A.05, Subd.8).
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.