Minnesota’s twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment’s Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.2 million Minnesota Regional Library System Legacy Grant. Great River Regional Library (GRRL) is a consolidated regional public library system in central Minnesota.
Minnesota's twelve regional library systems, which encompass more than 350 public libraries in all areas of the state, can benefit from a portion of the Legacy Amendment's Arts and Cultural Heritage Fund. Through State Library Services, a division of the Minnesota Department of Education, each regional library system is eligible to receive a formula-driven allocation from the annual $2.5 million Minnesota Regional Library System Legacy Grant.
The goal of this project is to extend the input timeseries for the existing Crow Wing, Redeye, and Long Prairie, watershed Hydrologic Simulation Program FORTRAN (HSPF) models and refine the calibration.
Objective 1: By the end of 24 months, at least 50 students will increase their Ojibwemowin fluency level one ACTFL step each year. Objective 2: Establish a library at Endazhi-Nitaawiging with at least 500 books to support K-8 immersion education.
This project proposes to increase the adoption of cover cropping in southwest Minnesota to address issues of loss of diversity and environmental degradation. By generating important information on cover crops,
The Leech Lake Band of Ojibwe is working within the Leech Lake Reservation boundaries to address loss and degradation of aquatic habitat for wild rice and waterfowl. Efforts will include regulating water levels on shallow lakes by controlling beaver activity and conducting periodic water level draw-downs, reseeding of approximately 200 acres of wild rice, and implementing adaptive management based on analysis of wild rice productivity.
With this appropriation, the Minnesota Land Trust plans to protect approximately 500 acres of critical shoreline habitat along Minnesota's lakes, wetlands, rivers, and streams by securing permanent conservation easements and dedicating funds for their perpetual monitoring, management, and enforcement. Lands being considered for permanent protection in this round of funding are located in Becker, Beltrami, Blue Earth, Itasca, Kandiyohi, Lac Qui Parle, Le Sueur, Otter Tail, Pope, and Wabasha counties.
This project will sample and monitor 18 sites for chemical, physical and bacteriological parameters for two years in coordination with the 2015-16 Surface Water Assessment Grant (SWAG) work plan proposal. Headwaters Science Center (HSC) will be the project lead and recruit volunteer students from Trek North, Bug-O-Nay-Ge-Shig, and Deer Lake high schools as well as to two AmeriCorps volunteer crews. An experienced Minnesota Pollution Control Agency (MPCA) environmental scientist will be the project lead responsible for oversight and full compliance to MPCA protocols.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
The New HCC Storefront Museum Implementation Project will involve the development of a guided tour app & new curriculum for school groups based on MN's K-12 standards. The project will also include a new strategic marketing plan to assist the museum in achieving future attendance & outreach goals. Finally, a new tour guide will be hired to meet public demand for tours in the new museum space which is intended to promote cross-cultural awareness and understanding of Hmong culture and history.
This project will continue to develop, and calibrate/validate the hydrology of an HSPF watershed model for the Thief River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will construct, calibrate, and validate three HSPF watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
The project will investigate why, when, and where different species of harmful algal blooms release toxins into the water using hyperspectral microscopic imaging towards developing early warning remote sensing tools.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
To upgrade the HVAC system and insulation at The Charles A. Weyerhaeuser Memorial Museum in order to both meet museum and historic preservation standards.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
We will assess movements, survival, and causes of mortality of Minnesota elk while developing a non-invasive, safer method to estimate population size. This information is important for long-term management efforts.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.