The New HCC Storefront Museum Implementation Project will involve the development of a guided tour app & new curriculum for school groups based on MN's K-12 standards. The project will also include a new strategic marketing plan to assist the museum in achieving future attendance & outreach goals. Finally, a new tour guide will be hired to meet public demand for tours in the new museum space which is intended to promote cross-cultural awareness and understanding of Hmong culture and history.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
To hire a qualified HVAC engineer to prepare planning documents for a future project to improve environmental conditions for the Elysian School, listed in the National Register of Historic Places
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Minnesota has 15.9 million acres of forest land managed by a variety of county, state and federal agencies, and private landowners for timber production, wildlife habitat, and ecological considerations. Forest managers rely on inventory data to make effective planning and management decisions. Because forests are continually changing through natural and human processes, forest inventory data is periodically updated. However, doing so is an expensive and time-consuming endeavor and, as a result, much of Minnesota’s forest inventory data is currently out of date.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
To upgrade the HVAC system and insulation at The Charles A. Weyerhaeuser Memorial Museum in order to both meet museum and historic preservation standards.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project sustains momentum from the pilot project funded previously by the ENRTF for growing environmental education opportunities for learners from outside of Austin.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.
The goal of the Lake Volney Targeted Restoration project is to improve the water quality draining to Lake Volney, which is impaired for excess nutrients. The project contains eight priority areas and will install a variety of Best Management Practices, including stormwater basins, ag retention, wetland enhancement, and more.
Phase 4 of the Lake Winona Total Maximum Daily Load (TMDL) project will finalize the draft Lake Winona TMDL, dated November 2009, by completing additional data analysis, lake quality modeling, updating the TMDL report, and supporting the public involvement process.
As a strategic document, the Legacy Strategic Agenda (LSA) has four goals that build on achievements realized during the first five years of Legacy funding. Over the next four years, the LSA strategic priorities in education, grants, partnerships and unfamiliar stories will be acted on, measured and sustained at the community level. A dedicated LSA Collaborative representing a cross-section of the history community meets quarterly around the state to guide the work of LSA Priority Action Teams and to share successes.