Each fiscal year of ACHF funding, a majority of the twelve regional library systems agree to allocate 10% of their ACHF funding to support statewide partnership projects. SELCO serves as the fiscal agent for statewide projects.
We will deploy acoustic detectors and revisit roost trees identified in our previous ENRTF project to measure effect of seven years of white-nose syndrome on Minnesota bats.
The Children's Discovery Museum's (CDM) new 3,000 piece Wizard of Oz (WOZ) collection will be properly archived, conservation materials purchased, and exhibit concept and design drawings completed. CDM facilitators and educators will travel to other children's museums in Minnesota for staff enrichment and professional development.
To hire a qualified engineer to conduct a structural assessment of the 1917 Danebod Folk School Brick Building, listed in the National Register of Historic Places.
This project seeks to provide data on insecticide contamination in the soil and the insect community across the state and the effect of sublethal insecticide exposure on insect reproduction.
Grants to counties to implement SSTS programs including inventories, enforcement, development of databases, and systems to insure SSTS maintenance and of reporting program results to BWSR and MPCA and base grants.
To support teachers in addressing new science standards , we propose a series of workshops across Minnesota facilitating conversation about sustainability and water conservation, specifically integrating western science and Indigenous perspectives.
This project will collect water quality data at eight stream sites in three of the MPCA targeted watersheds. The sites are located on Medary Creek, Flandreau Creek, Pipestone Creek (2), Split Rock Creek, Rock River, Poplar Creek and Chanarambie Creek. This project will also promote a citizens monitoring program and encourage individuals to participate in a monitoring program.
This comprehensive water sampling program will assess the water quality of six sites: two main points on the Rock River, two main tributaries to the Rock River, and two points where streams leave the state (Mud and Beaver Creek) for a period of two years.
This project involves monitoring three data deficient lakes in the Crow Wing River Watershed and one stream site at the inlet to White Earth Lake. The data deficient lakes were on the MPCA Targeted watershed list. After getting the required assessment dataset for these lakes, all targeted lakes in Becker County will be completed for this assessment cycle. The stream site is a site that the White Earth Lake Association and the Becker Coalition of Lake Associations (COLA) will monitor. It is the inlet to White Earth Lake.
This project will allow monitoring to take place on nine stream sites and characterize their water quality and determine their impaired status for biological and chemical parameters. The physical and chemical measurements will include dissolved oxygen, pH, temperature, conductivity, transparency, total phosphorus, total Kjeldahl nitrogen, total suspended solids, total volatile solids, nitrite-nitrate nitrogen, chloride, sulfate, hardness and e-coli.
This project will collect water quality data for 13 Hubbard County lakes located in the Crow Wing priority watershed and identified as priority lakes by the MPCA. Upon completion the project data set will include all of the necessary information for the lakes to be assessed for impairment due to nutrients. Volunteers will collect samples from 7 of the 13 lakes and paid SWCD staff will collect samples from 6 of the lakes that do not have public access or volunteers willing to sample. The water samples will be collected 5 times/year June-September in 2010 and 2011.
This project will obtain a lake data set for Douglas County while fostering lake association participation, ownership, and understanding of their lakes. A better understanding of these lakes is necessary in order to meet goals established in the 2009-2019 Comprehensive Local Water Management Plan and enable 303(d) and 305(b) assessments. Lakes included in this project are: Agnes, Alvin, Blackwell, Brophy, Charley, Cook (Cork), Crooked (East), Crooked (NW), Echo, Henry, Lovera (Lovers), Mina, Round, and Spring.
The soil and water conservation districts within the watersheds for the Redwood and Cottonwood Rivers have been putting conservation practices on the ground for years in a long-running collaborative effort.
This project will be a joint effort between the Todd Soil & Water Conservation District (SWCD) and the Sylvan Shores residents. Todd SWCD will organize and coordinate the project in full partnership with the Sylvan Shores residents. The actual monitoring will be a cooperative effort between Todd SWCD staff and citizen volunteers at Fawn and Pine Island Lakes.
RESPEC is a contractor with knowledge of site-specific standard development and will respond to United States Environmental Protection Agency questions and concerns regarding attainability of standards. The response will be based on bathtub model data and also a review of technical memorandums developed by the Minnesota Pollution Control Agency on aquatic life and aquatic recreational standard attainability.
The Children's Discovery Museum in Grand Rapids, Minnesota will increase access and deepen engagement with their effectively proven School Service Program. The museum will take down the economic barriers and increase enrollment. This grant will fund more educators and facilitators, curriculum development, scholarship aid, transportation assistance and art/teaching supplies.
Fourteen permanent RIM Easements on 766 acres of high quality, riparian and forested habitat have been recorded and will provide lasting wildlife habitat. Attempts were made to acquire three tracts in fee title that would have relied on this funding. The owner of one tract rejected an offer of the certified appraised value. Acquisition attempts on the other two tracts were discontinued when it became apparent that the planned use of the land as DNR Wildlife Management Area would be incompatible with local government plans for future municipal growth.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
The goal of this project is to assess groundwater sustainability in the I-94 corridor between the Twin Cities and St. Cloud due to the corridor's significant expected growth, the inerent natural limits of groundwater, and the vulnerability of groundwater to contamination.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
The main outcome of the project will be the development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
The main outcome of the project will be development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
Project partners play a vital role in the implementation of the Verdi Wellhead Protection Plan and have made this water source a priority in lowering nitrate levels. The aquifer used by the wells in the Verdi Well Field consists of a sand and gravel horizon about 30' thick which overlies clay-rich till. The geological sensitivity in all five of the Verdi wells is classified as "high".The Verdi Well Field supplies water to ten community water suppliers, 34 large rural users, and 1,126 rural hookups. Total population served by this water supply is about 7,500.