Each fiscal year of ACHF funding, a majority of the twelve regional library systems agree to allocate 10% of their ACHF funding to support statewide partnership projects. SELCO serves as the fiscal agent for statewide projects.
We will deploy acoustic detectors and revisit roost trees identified in our previous ENRTF project to measure effect of seven years of white-nose syndrome on Minnesota bats.
This project seeks to provide data on insecticide contamination in the soil and the insect community across the state and the effect of sublethal insecticide exposure on insect reproduction.
To support teachers in addressing new science standards , we propose a series of workshops across Minnesota facilitating conversation about sustainability and water conservation, specifically integrating western science and Indigenous perspectives.
The Nobles Soil and Water Conservation District (SWCD) will test waters needing data for impairment listing in the Rock River and Little Sioux watersheds. Two reaches of the Little Rock River and the Ocheyedan River need stream water assessments. Iowa Lake needs sampling completed for impairment identification. The project will obtain adequate stream and lake data to either list the tested stream reaches and lake on the 303(d) list as impaired, or provide evidence that the stream reaches and lake is not impaired.
This contract request will be for working with RMB Environmental Laboratories to submit assessable water quality data collected by US Fish & Wildlife Service - Tamarac Wildlife Refuge to the Minnesota Pollution Control Agency's Environmental Quality Information System (EQuIS) database, to support water quality assessments and development of future Watershed Restoration and Protection Strategy (WRAPS) reports.
This area of the Minnesota River Basin has been identified as contributing significant amounts of sediment to the watershed. The primary cause of the sediment is from gullies and ravines. This project by the Greater Blue Earth River Basin Alliance (GBERBA) continues efforts begun with FY2011 Clean Water Funds. Using data collected through Geographic Information Systems (GIS) and LiDAR, GERBA will install best management practices to address severe ravines and gullies in targeted specific locations.
To be able to manage resources in the Blue Earth and Le Sueur Watersheds into the future and have a positive effect on water quality, resource managers need high quality accurate data to support decision making of best management practice (BMP) implementation. Digital elevation data is a valuable resource for modeling water flow, however in its current state it cannot represent water conveyance through features such as roadways. These flow barriers limit the accurate use of data for recently developed targeting tools identifying BMP suitability and effectiveness down to the field scale.
The Greater Blue Earth River Basin Alliance (GBERBA), a nine County/SWCD JPO has identified buffers as a basin priority. This initiative will work towards the goal of identifying all DNR protected shoreland in the GBERBA counties without a 50 foot vegetative buffer. Buffer strips protect surface and groundwater from a multitude of pollutants. During stormwater run off events buffers can remove between 50 and 100 percent of nutrients, pesticides, pathogens, and sediment. The estimated sediment reduction for this project is 756 tons per year prevented from entering our waters.
Water flows without concern for political jurisdiction boundaries. This often means project work requires a little more coordination. Jackson, Cottonwood and Murray County did the extra coordination to land a grant to reduce sediment to the West Fork of the Des Moines River. The approved grant has four separate projects inthree counties.Jackson County has two projects: the Federated Rural Electric Association sediment control structure and the City of Jackson bioswale.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
Portions of the South Branch of the Buffalo River are currently overloaded with sediment. Two primary waterways in the watershed, Deerhorn Creek and the South Branch, are listed as impaired for turbidity. Due to sediment deposition in the channel, the waterways have lost much of their capacity. Historical attempts by landowners and others to restore the capacity of the channel by removing sediment have had limited success due to additional excess sediment being washed into the channel.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
The Watonwan Watershed Technician will provide highly focused targeting of conservation programs and practices. The technician will enhance current staff capabilities in the Watonwan watershed by collecting landowner contact information from previous studies and GIS methods, produce mass mailings about funding opportunities, and meet one-on-one with landowners to discuss their conservation concerns. The technician will implement 45 projects/practices over a three year period.
In conjunction with the Watonwan Major Watershed Project engagement process, create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the Watonwan River watershed.
Develop a network of informed citizens, business people, community leaders and others capable of acting collectively to get work done in a sustained, strategic and meaningful way through a sense of shared ownership in the water resource management process.
The Watonwan Watershed Resource Specialist has been funding with Clean Water funds since 2012. Since that time, the Watonwan Watershed Resource Specialist has been a crucial connector between landowners and natural resource professionals in the Watonwan Watershed. As the technical ability and responsibilities of the WWRS expands, the need and urgency to secure extended funding becomes a priority. This project will fund half of the Watonwan Watershed Research Specialist position through year 2020.
With the completion of LiDAR data in southern Minnesota, it is imperative to use this data as effectively as possible. In order to do so, the Greater Blue Earth River Basin Alliance (GBERBA) will contract with a vendor to complete a Geographic Information System (GIS) terrain analysis in subsheds of the Watonwan River watershed. This inventory will utilize the State of Minnesota LiDAR elevation datasets to create many GIS datasets by spatially analyzing the elevation data.
The Bois De Sioux Watershed District (BdSWD) is partnering with the Wilkin County Soil and Water Conservation District (SWCD), Wilkin County, and landowners to reduce sediment load by 450 tons/year and phosphorus load by 90 lbs/yr to the Bois de Sioux River. This project is estimated to meet 10% of the Bois de Sioux-Mustinka short-term reduction goals for sediment and 28% of the short-term goal for phosphorus reduction in the planning region. Wilkin County Ditch #1 (WCD #1) outlets to the Bois de Sioux River, which is impaired for turbidity, dissolved oxygen, total phosphorus, and e. coli.