The project will estimate sand-sized sediment loads for the Blue Earth and Le Sueur Rivers using United States Geological Survey (USGS) measurements to create an overall sediment budget for the rivers in conjunction with already completed fine sediment budgets. The development of the estimates from USGS data and comparisons will strengthen the understanding of the magnitude of the sand component of the total sediment load in the rivers.
The project will estimate the amount of sand loading at the mouth of the Blue Earth and Le Sueur Rivers using suspended sediment and bedload data collected by the United States Geologic Survey (USGS) and the analysis results published by the USGS and others. The development of the estimates from USGS data and comparisons to existing estimates will strengthen the understanding of the magnitude of the sand component of the total sediment load in the rivers.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
This project is a collaboration between Blue Earth and Watonwan County. The two counties will share information, ideas and resources as they complete mining reclamation and wetland management plans to include in their local water management plans and comprehensive land use plans. Master plans for mining reclamation and wetland management will be used as guidance for planning and zoning decisions and implementing water management priorities that will enhance water quality protection and restoration efforts.
The Halvorson Streambank Stabilization site is located three miles north of the City of Thief River Falls on the Thief River. The Thief River is impaired for low dissolved oxygen and turbidity. A TMDL study began in 2010. These impairments affect fish spawning habitat, recreation and the drinking water supply of Thief River Falls. Studies show that 63% of the sediment in the Thief River is coming from the banks of the river itself. Stabilizing this bank will reduce the turbidity and low dissolved oxygen impairments.
This project proposes to increase the adoption of cover cropping in southwest Minnesota to address issues of loss of diversity and environmental degradation. By generating important information on cover crops,
Overall Project Outcome and Results
The Minnesota Valley Trust acquired 78.5 acres of priority lands in Lincoln Township of Blue Earth County to expand the Lincoln Waterfowl Production Area for the Minnesota Valley Refuge and Wetland Management District, US Fish and Wildlife Service. Of the 78.5 acres, 21 acres were acquired with Environment and Natural Resources Trust Fund; the other 56.5 acres were acquired with nonprofit / other, non-state funds.
With this appropriation, the Minnesota Land Trust plans to protect approximately 500 acres of critical shoreline habitat along Minnesota's lakes, wetlands, rivers, and streams by securing permanent conservation easements and dedicating funds for their perpetual monitoring, management, and enforcement. Lands being considered for permanent protection in this round of funding are located in Becker, Beltrami, Blue Earth, Itasca, Kandiyohi, Lac Qui Parle, Le Sueur, Otter Tail, Pope, and Wabasha counties.
The Minnesota Valley National Wildlife Refuge Trust is using this appropriation to purchase a total of approximately 80 acres of high quality grasslands and wetlands in Blue Earth or Le Sueur County to be managed as a federal Waterfowl Production Area (WPA) in the Minnesota Valley Wetland Management District.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
To strengthen a large partnership, including American Indian partners, as they improve and make available more historic information about the Minnesota River Valley.
Our new project, Honor the Past, Preserve the Future: Hmong 18 Clans Custom and Cultural Preservation Project, is to preserve the history, traditional, and changing lives of the Hmong Minnesotans.
This project will continue to develop, and calibrate/validate the hydrology of an HSPF watershed model for the Thief River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
An interpretive exhibit was created with table displays using historically factual text and illustrative photographs and a short play was developed to tell the story of how the dam was built and its affect on the local people and economy. The exhibit counters negative impressions about the dam and provides little known information to the public.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
The project will investigate why, when, and where different species of harmful algal blooms release toxins into the water using hyperspectral microscopic imaging towards developing early warning remote sensing tools.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
We will compile all available data for Minnesota Trumpeter Swans and use these sources to model historical population abundance and predict future population dynamics.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
Funds for RIM conservation easements build on Clean Water Fund (CWF) investments for restoration and protection projects that "stack" habitat and clean water benefits. Projects will be identified in watershed plans developed through BWSR's One Watershed, One Plan program, in which local governments strategically set priorities for clean water and habitat, target implementation, and set measurable goals. BWSR currently distributes CWF dollars to partnerships with approved plans for water quality projects.
The Works Museum will design, fabricate, and install a new exhibit with partners from Minnesota's East African, Hmong, and Latinx communities that forwards elementary education goals and celebrates Minnesota's rich cultural diversity.
We will assess movements, survival, and causes of mortality of Minnesota elk while developing a non-invasive, safer method to estimate population size. This information is important for long-term management efforts.
Funding supports an Irrigation Specialist to develop guidance and provide education on irrigation and nitrogenbest management practices (BMPs). In this position, Dr. Vasu Sharma provides direct support to irrigators onissues of irrigation scheduling and soil water monitoring. She is collaborating on the development of new irrigationscheduling tools that help irrigators manage water and nitrogen resources more precisely. These tools help reducenitrogen leaching losses in irrigated cropping systems.
This project sustains momentum from the pilot project funded previously by the ENRTF for growing environmental education opportunities for learners from outside of Austin.
The 14,080 acre watershed of JD#30 and JD#18 drains into the Thief River four miles upstream of Thief River Falls. The City of Thief River Falls draws their drinking water from the reservoir the Thief River supplies. This reservoir is filling with sediment faster than anticipated. It was first estimated that the reservoir would require dredging every 50 years. The last dredging was needed in only 35 years at a price tag of $1.1 million. Treatment of the water for drinking is a major expense to the City.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
The goal of this project is to support the Minnesota Pollution Control Agency (MPCA) in responding to public comments on the Lake Pepin Watershed Phosphorus Total Maximum Daily Loads (TMDLs), which were prepared by LimnoTech under previous phases of the project.