Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
This project will provide modeling services to support the completion of the Typo Lake and Martin Lake Excess Nutrients TMDL report. A Total Maximum Daily Load (TMDL) report quantifies pollutant levels, identifies sources of pollution, and proposes ways to bring water quality back to an acceptable level.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
To update the 2003 Historic Structures Report to provide more specific guidance on the restoration of the Randolph M. Probstfield House, listed in the National Register of Historic Places.
Though many parts of the Twin Cities metropolitan area are urbanized, there are also has large areas of natural lands that continue to serve as important habitat for fish, wildlife, and plant communities. However, pressure on these remaining lands continues to intensify as population and development pressures increase.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
A joint effort of Becker and Clay Soil and Water Conservation District, the Buffalo Red Shallow Lakes and Mainstem Improvement Strategy will reduce nutrient and sediment delivery to 12 impaired lakes and impaired reaches of the Buffalo River through a targeted and prioritized approach to the implementation of Best Management Practices (BMPs). Numerous models have been combined with local knowledge to identify chief sources of constituents in the watershed and to isolate and prioritize implementation sites demonstrating the most significant gains in water quality.
This project will collect up to one year of water quality and stream flow information on Kelle’s Coulee to aid in the development of the Valley Branch Watershed District Restoration and Protection study. The information being collected by the Washington Conservation District will be used in developing the models necessary to complete the TMDL for Kelle’s Coulee.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
Phase 4 of the Wetland Habitat Protection and Restoration Program will result in the protection of 800 acres of high priority wetland habitat complexes in Minnesota’s Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Our project aims to better understand white-tailed deer movement, habitat use, and disease dynamics at the suburban/agricultural interface to inform more efficient deer management and disease control.
Phase 2 of the Wild Rice River Watershed Restoration and Protection Strategy (WRAPS) project includes: continued civic engagement; production of the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; and production of the WRAPS report, which identifies implementation strategies that will maintain or improve water quality in many lakes and streams throughout the watershed.
Assesss current data sources and preliminary information about the conditions in the watershed and present the information through bibliographies, abstracts and memos.
Over the next six years, the Buffalo-Red River Watershed District (BRRWD), in partnership with landowners, federal, state, and local agencies, intends to implement a long-term comprehensive plan to restore the Wolverton Creek and its riparian corridor. This comprehensive project will turn 20 channelized stream miles to 26.2 miles of restored natural prairie stream channel. It will also protect, enhance, and restore over 740 acres (357 acres in Phase 1) of floodplain wetland and grassland habitat along the Wolverton Creek.
Wolverton Creek is a 25 mile long tributary to the Red River of the North. Its watershed drains approximately 105 square miles located in Wilkin and western Clay Counties. Wolverton Creek is the outlet for numerous ditch systems and natural drainage in the area and is a significant contributor of sediment to the Red River. The City of Moorhead and other downstream communities obtain drinking water from the Red River. Since 85% of Moorhead's drinking water comes from the Red River, high turbidity results in
higher treatment costs for their drinking water system.
The project is to research, develop, write and publish the rule and regulations for the sport of Sepak Takraw and Tujlub. Rules and guidelines for type material, size, weights, heights, softness, court sizes, court marking for the age appropriate level of plays. The funds will be used to contract local experts in coaching, officiating and other related athletic and educational areas of up to the publication phase.