Phase 2 of the Wild Rice River Watershed Restoration and Protection Strategy (WRAPS) project includes: continued civic engagement; production of the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; and production of the WRAPS report, which identifies implementation strategies that will maintain or improve water quality in many lakes and streams throughout the watershed.
Assesss current data sources and preliminary information about the conditions in the watershed and present the information through bibliographies, abstracts and memos.
Over the next six years, the Buffalo-Red River Watershed District (BRRWD), in partnership with landowners, federal, state, and local agencies, intends to implement a long-term comprehensive plan to restore the Wolverton Creek and its riparian corridor. This comprehensive project will turn 20 channelized stream miles to 26.2 miles of restored natural prairie stream channel. It will also protect, enhance, and restore over 740 acres (357 acres in Phase 1) of floodplain wetland and grassland habitat along the Wolverton Creek.
Wolverton Creek is a 25 mile long tributary to the Red River of the North. Its watershed drains approximately 105 square miles located in Wilkin and western Clay Counties. Wolverton Creek is the outlet for numerous ditch systems and natural drainage in the area and is a significant contributor of sediment to the Red River. The City of Moorhead and other downstream communities obtain drinking water from the Red River. Since 85% of Moorhead's drinking water comes from the Red River, high turbidity results in
higher treatment costs for their drinking water system.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.