This project will result in the development of three critical pieces of information. They include: 1. Development of restoration and protection strategies for all waterbodies in the district relative to the State's Non-point Source Funding plan 2. Use of PTMApp to tie the WRAPs implementation tables from the Buffalo and Red River Watersheds to targeted on-the-ground projects and practices that will provide measurable water quality improvements, and 3.
Collaboration between African and Asian American artists to jointly create/present a new dance drama - Resonance.
Project Resonance orchestrates new creations of music and dances to serve as a communication bridge across cultural/racial lines, to mitigate racial tensions between African and Asian communities, to illustrate the cross-cultural experience, and eventually promote Intercultural Harmony.
Resonance inspires inner/outer connections to create sustainable impacts.
US Geological Survey (USGS) will perform real-time water quality monitoring at its stations located in Fargo and Grand Forks. The Minnesota Pollution Control Agency co-sponsors this work along with USGS, North Dakota Dept. of Health, the cities of Fargo, Moorhead, Grand Forks, and East Grand Forks.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The objectives of this project are to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North. Data will be published on the USGS Nation Water Information System (NWIS) website and in the USGS Annual Report.
Agency staff and local partners will gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
This is a multi-governmental project funded by the Minnesota Pollution Control Agency, the United States Geological Survey, North Dakota Department of Health, the Cities of Fargo, Moorhead, Grand Forks, and East Grand Forks to monitor river flow and condition parameters to gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
The Clay SWCD will partner with the Buffalo-Red River Watershed District (BRRWD) and landowners to stabilize gullies to the Red River. The first priority will be to address ongoing erosion in Snakey Creek. Snakey Creek is the outlet of County Ditch No. 41 which has become the most critically eroding gully contributing sediment to the Red River in our targeted reach. When stabilized, sediment load to the river will be reduced by 1404 tons per year, and Total Phosphorus will be reduced by 1615 pounds per year.
The goal of this project is to development a Total Maximum Daily Load (TMDL) study that addresses all of the non-mercury-related impaired reaches along the Red River of the North (RRN). The TMDL study will provide an analytical and strategic foundation for recommending restoration strategies for impaired waters. This phase of the project will also include civic engagement efforts by providing water quality framework and stakeholder activities for civic/citizen engagement and communication.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.
The objective of this project is to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks North Dakota.
The goal of this project is to collect real-time, parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity, and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks, ND on the Red River of the North. The data will be published on the USGS National Water Information System (NWIS) website.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The RIM-WRP program will expand past efforts and provide important benefits to the citizens of Minnesota by restoring and permanently protecting priority wetlands and associated upland native grassland wildlife habitat via perpetual conservation easements. This funding will leverage $12.6 million of federal WRP funds for the State of Minnesota and is expected to create and sustain 343 jobs and income to local landowners, businesses and others in the state based on USDA economic estimates.
The Reinvest in Minnesota (RIM) Reserve Wetlands Reserve Program (WRP) Partnership will accelerate the restoration and protection of approximately 4,620 acres of previously drained wetlands and associated upland native grassland wildlife habitat complexes via perpetual conservation easements. The goal of the RIM-WRP Partnership is to achieve the greatest wetland functions and values, while optimizing wildlife habitat on every acre enrolled in the partnership.
Minnesota's wetlands provide crucial habitat for waterfowl and other wildlife, assist in flood control, and help maintain water quality. However, the state has lost half the wetlands that existed before European settlement and these drained wetlands have not been mapped as part of the National Wetlands Inventory. This appropriation is enabling efforts by Ducks Unlimited to provide a complement to the National Wetlands Inventory by identifying and mapping drained wetlands that have the potential to be restored to provide their various benefits once again.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.