This project involves monitoring three data deficient lakes in the Crow Wing River Watershed and one stream site at the inlet to White Earth Lake. The data deficient lakes were on the MPCA Targeted watershed list. After getting the required assessment dataset for these lakes, all targeted lakes in Becker County will be completed for this assessment cycle. The stream site is a site that the White Earth Lake Association and the Becker Coalition of Lake Associations (COLA) will monitor. It is the inlet to White Earth Lake.
This project will collect water quality data for 13 Hubbard County lakes located in the Crow Wing priority watershed and identified as priority lakes by the MPCA. Upon completion the project data set will include all of the necessary information for the lakes to be assessed for impairment due to nutrients. Volunteers will collect samples from 7 of the 13 lakes and paid SWCD staff will collect samples from 6 of the lakes that do not have public access or volunteers willing to sample. The water samples will be collected 5 times/year June-September in 2010 and 2011.
This project will obtain a lake data set for Douglas County while fostering lake association participation, ownership, and understanding of their lakes. A better understanding of these lakes is necessary in order to meet goals established in the 2009-2019 Comprehensive Local Water Management Plan and enable 303(d) and 305(b) assessments. Lakes included in this project are: Agnes, Alvin, Blackwell, Brophy, Charley, Cook (Cork), Crooked (East), Crooked (NW), Echo, Henry, Lovera (Lovers), Mina, Round, and Spring.
This project will be a joint effort between the Todd Soil & Water Conservation District (SWCD) and the Sylvan Shores residents. Todd SWCD will organize and coordinate the project in full partnership with the Sylvan Shores residents. The actual monitoring will be a cooperative effort between Todd SWCD staff and citizen volunteers at Fawn and Pine Island Lakes.
This contract request will be for working with RMB Environmental Laboratories to submit assessable water quality data collected by US Fish & Wildlife Service - Tamarac Wildlife Refuge to the Minnesota Pollution Control Agency's Environmental Quality Information System (EQuIS) database, to support water quality assessments and development of future Watershed Restoration and Protection Strategy (WRAPS) reports.
With the proposed project, the Pomme de Terre River Association will target catchments delivering the highest 25% of sediment from agricultural land and identified priority management zones for storm water runoff (identified in the Watershed Restoration and Protection Strategy). Implementation is estimate to reduce sediment runoff to prioritized water bodies by 14,690 tons per year and phosphorous by 12,270 pounds per year.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
Portions of the South Branch of the Buffalo River are currently overloaded with sediment. Two primary waterways in the watershed, Deerhorn Creek and the South Branch, are listed as impaired for turbidity. Due to sediment deposition in the channel, the waterways have lost much of their capacity. Historical attempts by landowners and others to restore the capacity of the channel by removing sediment have had limited success due to additional excess sediment being washed into the channel.
This project will utilize eight surface water sites in the Redeye River Watershed to collect chemical samples and complete field analysis that will be helpful in determining the health of the streams in the watershed. The Redeye River Watershed contains three main rivers (Red Eye, Leaf, and Wing) that drain to the Crow Wing River and ultimately to the Mississippi River. Main concerns in this watershed are low dissolved oxygen levels, excess sediment, increased drainage and flow alterations, and high bacteria levels.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Tetra Tech will work to support the science needed when planning in Minnesota for water storage practice implementation. The goal is to provide practical water storage recommendations that can be incorporated into smaller scale planning within major watersheds (HUC 8), as well as larger scale planning for the Sediment Reduction Strategy for the Minnesota River and South Metro Mississippi River.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Wellhead Protection Conservation Easement program is targeted to protect drinking water through the Reinvest in Minnesota Program (RIM).
Wolverton Creek is a 25 mile long tributary to the Red River of the North. Its watershed drains approximately 105 square miles located in Wilkin and western Clay Counties. Wolverton Creek is the outlet for numerous ditch systems and natural drainage in the area and is a significant contributor of sediment to the Red River. The City of Moorhead and other downstream communities obtain drinking water from the Red River. Since 85% of Moorhead's drinking water comes from the Red River, high turbidity results in
higher treatment costs for their drinking water system.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.