We will assess the environmental quality of prairies across Minnesota. On-the-ground surveys and contaminant risk assessments will help inform partner management actions, endangered species recovery plans, and pollinator reintroduction efforts.
The Berger Fountain, known as the dandelion fountain to most, was installed in 1975 by Benjamin Berger and has been a beloved neighborhood landmark in Loring Park and a favorite location for wedding photographers and children ever since. Ben Berger was a park board commissioner and, after seeing a dandelion fountain in Australia, fundraised to build a sister fountain right here in Minnesota.
This study will leverage our current bioacoustics monitoring framework to assess avian diversity at the statewide scale through a citizen science acoustic monitoring program, with a focus on private lands.
This project will result in the final the Bois de Sioux River Watershed Restoration and Protection Strategies (WRAPS) report and Total Maximum Daily Load (TMDL) study. This work order will authorize the consultant to address all comments received during the public notice period and produce the final WRAPS report for the Minnesota Pollution Control Agency's final approval and a final TMDL study for United States Environmental Protection Agency's (EPA) final approval.
This project involves the extension and update of the Hydrological Simulation Program FORTRAN (HSPF) model for the Bois de Sioux and Mustinka watersheds.
This project will address United States Environmental Protection Agency (EPA) comments on the preliminary draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft TMDL study and Watershed Restoration and Protection Strategy (WRAPS) report, and produce the public notice draft TMDL study and the public notice draft WRAPS report ready for public review and comment. Conduct one public meeting for each watershed to present public notice drafts of the TMDL study and WRAPS report for each watershed.
This project will develop a watershed approach plan, including impaired waters allocations, for the Mustinka Watershed, located at the headwaters of the Red River of the North, in western Minnesota, lying partly in Grant, Stevens, Ottertail, Big Stone, and Traverse counties. The watershed approach plan will set water quality goals for the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet state standards and are listed as impaired.
This full-scale pilot will evaluate supercritical water oxidation (SCWO) for managing PFAS in biosolids and water treatment residuals. SCWO can destroy PFAS in a variety of wastes and recover energy.
The goal of this project is to complete the construction of an Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. Tetra Tech will produce a HSPF watershed model application(s) that will be fully functioning and ready for calibration as part of Phase 2.
This is the second phase of building the Hydrologic Simulation Program FORTRAN (HSPF) model for the Buffalo River watershed. The project will result in a completed model including necessary calibration and validation phases.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA has decided to construct watershed models. These models have the potential to support the simultaneous development of TMDL studies for multiple listings within a cataloging unit or 8-digit Hydrologic Unit Code watershed.
This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.