This project is the second phase of updating the Two Rivers watershed Hydrologic Simulation Program FORTRAN (HSPF) model. This project includes calibration of the model and including a proposed impoundment in the model. An analysis of possible downstream water quality impacts will also be done.
The primary objective of this project is to extend the simulation period of the Two Rivers Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2017 to support future simulation and assessment of the planned Klondike impoundment.
The goals of Phase I of the TRW WRAP are to: 1) gather or develop watershed data needed for the development of the Watershed Restoration and Protection Strategy; and 2) establish project and sub-basin work groups, develop a social outcomes strategy, and develop a civic engagement evaluation strategy to guide the WRAP project.
The City of Hallock, with funding from LSOHC, restored and enhanced habitat to facilitate fish passage by retrofitting the existing Hallock Dam on the South Branch of the Two Rivers and re-established a stable riffle-pool habitat downstream. In addition to the fish habitat improvement , the project has provided enhanced recreational opportunities for paddlers along the river.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
Over the past 100 years, about half of Minnesota’s original 22 million acres of wetlands have been drained or filled. Some regions of the State have lost more than 90 percent of their original wetlands. The National Wetland Inventory, a program initiated in the 1970s, is an important tool used at all levels of government and by private industry, non-profit organizations, and private landowners for wetland regulation and management, land management and conservation planning, environmental impact assessment, and natural resource inventories.
Phase II of the Upper South Branch Project will continue a FY2011 CWF project with the strategic implementation of conservation practices within the Upper South Branch of the Buffalo River watershed. This second phase will result in approximately 305 acres of new filter strips, 50 side inlet sediment control structures, and 8 sediment control basins which will reduce sediment loading to the stream by 4,700 tons/year and phosphorus by 9,700 pounds/year.
This project will provide MPCA staff, local partners and citizen volunteers with a framework for building local capacity to design civic engagement and communication/outreach efforts that will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed.
This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.
Portions of the South Branch of the Buffalo River are currently overloaded with sediment. Two primary waterways in the watershed, Deerhorn Creek and the South Branch, are listed as impaired for turbidity. Due to sediment deposition in the channel, the waterways have lost much of their capacity. Historical attempts by landowners and others to restore the capacity of the channel by removing sediment have had limited success due to additional excess sediment being washed into the channel.
Use mobile AI-assisted technologies to survey lake visitors. Assess perceptions of water quality and perceived threats. Combine survey data with water quality data and trend monitoring to inform lake management.
The Red River is impaired for turbidity. The level of turbidity is a significant factor in the cost of treatment of drinking water by the City of Moorhead. This water quality improvement project involves the retrofit of Clay County Ditches 9, 32, and 33 just south of the city. The project involves the installation of an estimated 87 side inlet sediment controls and 35 acres of buffer strips. All three of these ditch systems with over 16 miles of County Ditch will be treated for sediment and erosion control with the installation of conservation practices.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.
This is a joint project between the United States Geological Survey (USGS), Minnesota Pollution Control Agency (MPCA), North Dakota, and Manitoba. The project is a basin-wide, up-to-date water quality trend analysis using the "QWTrend" program for approximately 40 bi-national river sites to review nutrients, total suspended solids, total dissolved solids, sulfate and chloride from 1980 - 2015.
The Bois De Sioux Watershed District (BdSWD) is partnering with the Wilkin County Soil and Water Conservation District (SWCD), Wilkin County, and landowners to reduce sediment load by 450 tons/year and phosphorus load by 90 lbs/yr to the Bois de Sioux River. This project is estimated to meet 10% of the Bois de Sioux-Mustinka short-term reduction goals for sediment and 28% of the short-term goal for phosphorus reduction in the planning region. Wilkin County Ditch #1 (WCD #1) outlets to the Bois de Sioux River, which is impaired for turbidity, dissolved oxygen, total phosphorus, and e. coli.
Phase 6 of the Wetland Habitat Protection and Restoration Program will result in the protection of 1,213 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
Phase 7 of the Wetland Habitat Protection and Restoration Program will result in the protection of 1,144 acres of high priority wetland habitat complexes in Minnesota's Prairie and Forest-Prairie Transition areas by securing permanent conservation easements within scientifically prioritized habitat complexes. The Minnesota Land Trust will use its innovative market-based landowner bid model to maximize conservation benefit and financial leverage in protection project selection.
The Whiskey Creek project involves a coordinated and comprehensive approach to watershed management. This project consists of installing conservation practices that reduce sediment loading to Whiskey Creek while also providing flood reduction benefits to downstream landowners.
The Wilkin Soil and Water Conservation District will partner with the Buffalo Red River Watershed District, the Natural Resources Conservation Service, and landowners to install 59 side inlets to stabilize high priority gullies that are contributing sediment to Whiskey Creek. When these 59 gullies are stabilized, sediment loading to Whiskey Creek will be reduced by an estimated 1,006 tons per year and total phosphorus reduced by 794 pounds per year.
The Whiskey Creek Watershed is the largest subwatershed in the Upper Red River of the North drainage, encompassing 165.63 square miles in Otter Tail and Wilkin Counties. This watershed contains the headwaters of the Red River of the North, which begins in far west central Wilkin County, an area of mixed residential and agricultural land use. The cities of Breckenridge, Minnesota and Wahpeton, North Dakota, as well as the small town of Kent are within the watershed.
This program acquired priority lands and developed them as Wildlife Management Areas (WMA) - six parcels protected totaling over 600 acres, Scientific and Natural Areas (SNA) - one parcel of 900 acres (287 acres credited to this funding ), and Native Prairie Bank (NPB) easements - two parcels totaling almost 200 acres. These lands protect habitat and some provide public hunting, trapping and compatible outdoor uses.
A total of 62 grade stabilization structures and 13.5 miles of continuous berms will be constructed and become a permanent part of County Ditches 9 and 10. An additional 100 acres of buffers will be seeded beyond those required by law. Together these practices will reduce peak flows into the county ditches, provide better erosion control, reduce sediment, improve water quality and reduce future drainage system maintenance costs. The project will reduce 595 tons of sediment per year from the CD 9 & 10 watersheds to the Rabbit River. This is 18 percent of the Rabbit River TMDL goal.
To upgrade the fair’s stage lighting and provide arts and cultural performances and demonstrations. The Wilkin County Fair will enhance their lighting system on the Free Stage. The fair’s plan is to make the stage a major part of the fair and offers dance, polka, jazz, bluegrass, folk swing choir performances, along with educational demonstrations, such as spinning llama wool.
Over the next six years, the Buffalo-Red River Watershed District (BRRWD), in partnership with landowners, federal, state, and local agencies, intends to implement a long-term comprehensive plan to restore the Wolverton Creek and its riparian corridor. This comprehensive project will turn 20 channelized stream miles to 26.2 miles of restored natural prairie stream channel. It will also protect, enhance, and restore over 740 acres (357 acres in Phase 1) of floodplain wetland and grassland habitat along the Wolverton Creek.
Wolverton Creek is a 25 mile long tributary to the Red River of the North. Its watershed drains approximately 105 square miles located in Wilkin and western Clay Counties. Wolverton Creek is the outlet for numerous ditch systems and natural drainage in the area and is a significant contributor of sediment to the Red River. The City of Moorhead and other downstream communities obtain drinking water from the Red River. Since 85% of Moorhead's drinking water comes from the Red River, high turbidity results in
higher treatment costs for their drinking water system.
Adoption of renewable energy technologies and energy conservation practices can contribute in a variety of ways to the environmental and economic health of rural Minnesota communities through costs savings and emissions reductions. Engaging and coaching students as the leaders in the process of implementing such practices provides the added benefit of increasing knowledge, teaching about potential career paths, and developing leadership experience.