US Geological Survey (USGS) will perform real-time water quality monitoring at its stations located in Fargo and Grand Forks. The Minnesota Pollution Control Agency co-sponsors this work along with USGS, North Dakota Dept. of Health, the cities of Fargo, Moorhead, Grand Forks, and East Grand Forks.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The objectives of this project are to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North. Data will be published on the USGS Nation Water Information System (NWIS) website and in the USGS Annual Report.
Agency staff and local partners will gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
We will characterize environmental drivers contributing to the decline of wild rice using lake sediment cores to reconstruct historical wild rice abundance in relation to lake and watershed stressors.
This is a multi-governmental project funded by the Minnesota Pollution Control Agency, the United States Geological Survey, North Dakota Department of Health, the Cities of Fargo, Moorhead, Grand Forks, and East Grand Forks to monitor river flow and condition parameters to gain an improved understanding of the nature of the chemical and physical attributes of the Red River of the North.
This project will support water quality monitoring and data analysis in nine major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
This project is a partnership with Kittson County, the Joe River Watershed District and the Two Rivers Watershed District to install vegetative filters, buffers and erosion control practices along the Red River of the North and several major tributaries within the county.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
The Clay SWCD will partner with the Buffalo-Red River Watershed District (BRRWD) and landowners to stabilize gullies to the Red River. The first priority will be to address ongoing erosion in Snakey Creek. Snakey Creek is the outlet of County Ditch No. 41 which has become the most critically eroding gully contributing sediment to the Red River in our targeted reach. When stabilized, sediment load to the river will be reduced by 1404 tons per year, and Total Phosphorus will be reduced by 1615 pounds per year.
The goal of this project is to development a Total Maximum Daily Load (TMDL) study that addresses all of the non-mercury-related impaired reaches along the Red River of the North (RRN). The TMDL study will provide an analytical and strategic foundation for recommending restoration strategies for impaired waters. This phase of the project will also include civic engagement efforts by providing water quality framework and stakeholder activities for civic/citizen engagement and communication.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
This project will develop an effective transferable model to engage and educate watershed residents, stakeholders and others to better understand and protect watershed ecostystems through environmental monitoring, training, and formal and informal education programs in their local watershed. The project will build on the foundation of the existing Red River Basin River Watch program by strengthening three main activity areas: 1) curriculum integration and teacher training, 2) youth leadership and civic engagement, and 3) applied research collaboration and watershed science skills building.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.
The objective of this project is to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks North Dakota.
This project will monitor nine locations in the major watersheds (8-digit Hydrologic Unit Codes) of the Lower Red River Basin. The stream outlet monitoring will provide the water chemistry data needed to calculate annual pollutant loads. Staff from the Red River Watershed Management Board (RRWMB) will conduct the sampling, initially manage the data and provide the data to the Minnesota Pollution Control Agency (MPCA) for load calculations and import into the STORET data system.
The goal of this project is to collect real-time, parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity, and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo and Grand Forks, ND on the Red River of the North. The data will be published on the USGS National Water Information System (NWIS) website.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The RIM-WRP program will expand past efforts and provide important benefits to the citizens of Minnesota by restoring and permanently protecting priority wetlands and associated upland native grassland wildlife habitat via perpetual conservation easements. This funding will leverage $12.6 million of federal WRP funds for the State of Minnesota and is expected to create and sustain 343 jobs and income to local landowners, businesses and others in the state based on USDA economic estimates.
The Reinvest in Minnesota (RIM) Reserve Wetlands Reserve Program (WRP) Partnership will accelerate the restoration and protection of approximately 4,620 acres of previously drained wetlands and associated upland native grassland wildlife habitat complexes via perpetual conservation easements. The goal of the RIM-WRP Partnership is to achieve the greatest wetland functions and values, while optimizing wildlife habitat on every acre enrolled in the partnership.
Minnesota's wetlands provide crucial habitat for waterfowl and other wildlife, assist in flood control, and help maintain water quality. However, the state has lost half the wetlands that existed before European settlement and these drained wetlands have not been mapped as part of the National Wetlands Inventory. This appropriation is enabling efforts by Ducks Unlimited to provide a complement to the National Wetlands Inventory by identifying and mapping drained wetlands that have the potential to be restored to provide their various benefits once again.
Under the CREP partnership with USDA, 71 easements were recorded on a total of 4,365 acres to restore previously drained wetlands and adjacent uplands. The easements were accomplished with local implementation done by SWCD, NRCS and FSA staff within the 54 county CREP area and leveraged federal funds for both landowner payments and cost share for conservation practice installation.
The Clean Water Fund (CWF) and Outdoor Heritage Fund (OHF) were used together to secure easements on buffer areas. 25 easements have been recorded for a total of 672.1 acres and are reported in the output tables for the final report (acre total does not include Clean Water Fund acres). The total acreage from both CWF and OHF sources for recorded easements is 1,152.4 acres. Only the OHF acres are being reported in this final report to be consistent with the approved accomplishment plan.
The Reinvest in Minnesota (RIM) Wetlands Partnership Phase V protected and restored 2,041 acres of previously drained wetlands and adjacent native grasslands on 23 conservation easements. All easements have been recorded. $35,000 of funds from other sources were also used.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
To hire a qualified historian to complete the nomination to the National Register of Historic Places for the 1895 District 3 Rollag School House, Hawley, MN.
This is the second phase of the Roseau River Watershed Restoration and Protection Strategy (WRAPS) project, which includes: developing the Total Maximum Daily Load (TMDL) study, pollutant load allocations, watershed restoration and protection strategies, and conducting civic engagement.
The goal of this project is to construct, calibrate and validate a watershed model using Hydologic Simulation Program FORTRAN (HSPF) for the Roseau River Watershed.