Each fiscal year of ACHF funding, a majority of the twelve regional library systems agree to allocate 10% of their ACHF funding to support statewide partnership projects. SELCO serves as the fiscal agent for statewide projects.
We will deploy acoustic detectors and revisit roost trees identified in our previous ENRTF project to measure effect of seven years of white-nose syndrome on Minnesota bats.
This project seeks to provide data on insecticide contamination in the soil and the insect community across the state and the effect of sublethal insecticide exposure on insect reproduction.
To support teachers in addressing new science standards , we propose a series of workshops across Minnesota facilitating conversation about sustainability and water conservation, specifically integrating western science and Indigenous perspectives.
This project will complete the dataset required for assessment of Aquatic Recreation Use at 8 stream sites and 11 lake sites in the Sand Hill Watershed.
This project involves monitoring three data deficient lakes in the Crow Wing River Watershed and one stream site at the inlet to White Earth Lake. The data deficient lakes were on the MPCA Targeted watershed list. After getting the required assessment dataset for these lakes, all targeted lakes in Becker County will be completed for this assessment cycle. The stream site is a site that the White Earth Lake Association and the Becker Coalition of Lake Associations (COLA) will monitor. It is the inlet to White Earth Lake.
This project will obtain lab and field data for waterbodies within the Wild Rice Watershed, to meet surface water assessment goals. Data will continue to be collected further upstream of some 2008 sites and enhance current assessment datasets. Some new tributaries, that lack assessment data, will also be monitored. The project goal is to complete the datasets necessary for the assessment of Aquatic Recreation Use for twelve streams in the Wild Rice Watershed.
A partnership of local agencies and organizations will monitor water quality at eighteen carefully chosen sites within the Red Lake River and Grand Marais Creek watersheds. Fourteen monitoring sites have been chosen within the Red Lake River watershed. Four sites have been chosen in the Grand Marais Creek watershed. Each of these sites will provide a representative assessment of the water quality conditions within one or more minor subwatersheds at the 12-digit hydrologic unit code (HUC12) level.
This project will collect water quality data at sites within the Thief River watershed. Nine monitoring sites were chosen at strategic locations along the Thief River and its significant tributaries.
This project will finalize the Hydrologic Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to calculate an additional bacteria total maximum daily load and incorporating that information in the Total Maximum Daily Load Report (TMDL) and the Watershed Restoration and Protection Strategy (WRAPS) report. Other services that will be provided during this project are technical assistance, assistance with responses to comments received during the public notice process, incorporating public comments into the documents and preparing the documents for final federal and state approval.
Turtle Island Skywatchers - Innovative Research and Data Visualization project works to protect Minnesota water, wildlife, and natural resources while empowering Indigenous youth as leaders and all citizens as researchers.
This project is the second phase of updating the Two Rivers watershed Hydrologic Simulation Program FORTRAN (HSPF) model. This project includes calibration of the model and including a proposed impoundment in the model. An analysis of possible downstream water quality impacts will also be done.
The primary objective of this project is to extend the simulation period of the Two Rivers Watershed Hydrological Simulation Program FORTRAN (HSPF) model through 2017 to support future simulation and assessment of the planned Klondike impoundment.
The goals of Phase I of the TRW WRAP are to: 1) gather or develop watershed data needed for the development of the Watershed Restoration and Protection Strategy; and 2) establish project and sub-basin work groups, develop a social outcomes strategy, and develop a civic engagement evaluation strategy to guide the WRAP project.
We will reconstruct historical lake conditions to identify factors linked to successful walleye fisheries and guide effective management in the face of warming temperatures, invasive species, and nutrient loading.
Minnesotans increasingly value native fishes. For example, >95% of bowfished species in MN are native, yet all are poorly understood. Foundational natural resource data is absolutely necessary for all stakeholders.
Our goals are to engage 100,000 underserved youth statewide in environmental education, engaging them in the conservation and preservation of Minnesota wilderness through the experiences in the outdoors.
Over the past 100 years, about half of Minnesota’s original 22 million acres of wetlands have been drained or filled. Some regions of the State have lost more than 90 percent of their original wetlands. The National Wetland Inventory, a program initiated in the 1970s, is an important tool used at all levels of government and by private industry, non-profit organizations, and private landowners for wetland regulation and management, land management and conservation planning, environmental impact assessment, and natural resource inventories.
Minnesota Sea Grant seeks to create a science-policy fellowship program to train Minnesota's science-policy workforce and advance Minnesota's water resource policy, emulating Sea Grants successful federal-level fellowship program.
We propose robotics-based educational activities for middle-school youth on water quality in Minnesota. Youth will gain skills for measuring water quality and communicating results through group study and hands-on projects.