The projects planned for the grant funds focus on essential updates and enhancements to our historic building, ensuring that we can continue to provide a safe, welcoming, and inclusive space for all who visit. The proposed improvements include upgrading our HVAC system, kitchen, and security infrastructure; rebuilding the handicap ramp for improved accessibility; sourcing new patio furniture; and resealing the venue's dance floor. Each of these initiatives is designed to maintain the integrity of our facility while enhancing the experience of our diverse audience.
This project includes artist workshops for the Hispanic Community Outreach program. Workshops include: 1) puppet making; 2) paper Mache classes; 3) Guatemalan weaving classes; 4) mural and painting classes by Gustavo Lira, Mexican muralist/painter/sculptor/mosaic artist/ceramicist/art educator; 5) an Alebrijes workshop, with Aaron Johnson-Ortiz/Gustavo Boada. Johnson-Ortiz is a Latino cultural arts worker/organizer/public artist/muralist focused on workers' struggles, immigrant rights, and Latino culture.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will construct, calibrate, and validate an HSPF watershed model for the Zumbro River watershed. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs). The consultant will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.