This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to the Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project.
This project will assess 4 lakes and 17 stream sites. The four lakes will be assessed for total phosphorus, chlorophyll-a, and secchi data by the HCWP staff. Staff will monitor East Twin, West Twin, West Solomon, and St. John’s Lakes for total phosphorus, chlorophyll-a, and Secchi disk readings. In order to obtain a sufficient dataset. Ten samples will be collected over 2 years. Water samples at 17 stream locations for chemical analyses, including intensive watershed monitoring sites and “non-target” sites.
This project will monitor a total of eight sites (six through the Watershed Pollutant Load Monitoring Network and two through the Intensive Watershed Monitoring). Through the Watershed Pollutant Load Monitoring Network, six sites will be monitored within the Minnesota River - Granite Falls Watershed: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls.
Overall Project Outcome and Results
This project contained two types of habitat enhancement that resulted in the enhancement of a total of 72 acres of habitat.
Evaluation of Minnesota raptors, in rehabilitation and free ranging settings, for current or previous exposure to highly pathogenic avian influenza virus to better understand outbreak impacts to raptor populations.
To strengthen a large partnership, including American Indian partners, as they improve and make available more historic information about the Minnesota River Valley.
Telling Queer History will support the collection and preservation of personal oral histories from LGBTQIA+ communities in rural Minnesota; historical research for our archives and LGBTQ+ history walking tours; and community outreach in greater Minnesota. This grant will also support the early development of a series of supplemental curriculum products detailing Minnesota LGBTQ+ history, creating a potential new earned revenue stream for TQH.
Red Wing Arts will facilitate a collaboration beginning the process of healing the historical trauma that
divides the Dakota and Red Wing residents. Leaders of the Prairie Island Indian Community, Goodhue County
and Red Wing Arts will use the power of the arts to host engagement and cultural education arts experiences
that provide space for healing, improved mental health and connection. A mural designed by tribal members
will be installed in downtown Red Wing will symbolize this initiative.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will enhance the current program, integrating new invasive carp control and detection methods to monitor and remove invasive carp to avoid establishment in Minnesota.
Winter sport fishing for trout is a vibrant industry, but can be impacted by changing climate. We seek to understand how to conserve trout habitat, especially focusing on winter management.
Autonomous robots, powered by green hydrogen and solar power, designed to remove weeds in row crop fields can improve agricultural ecosystems with reduced herbicide application and fossil fuel use.
The proposed project will be in conjunction with an improvement project to the 103E County Ditch 63 Lateral N (CD 63) system. The project will accomplish the construction of five water and sediment control basins (WASCOB) and five alternate intakes to replace open intakes within the CD63 system, which is the headwaters of Beaver Creek East Fork. The construction and installation of the conservation practices will achieve a reduction of sediment, provide temporary water storage, and reduce peak flows that allow sediment and phosphorus to directly enter impaired Beaver Creek East Fork.