International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The goal of this project is to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data for the benefit of water quality in the Red River Basin.
The College of Saint Benedict and Saint John's University (CSB+SJU), in partnership with the University of Minnesota Morris (UMM), will collect and analyze archival records and oral testimonies on Native American boarding schools in order to develop educational materials that promote truth and healing. The project includes: 1) archival research; 2) oral testimonies; 3) developing curricular materials from these archival and oral records.
High sediment levels in streams are prevalent throughout South Eastern Minnesota. Installing proven and cost-effective conservation practices that collectively reverse these impairments while also meeting flood protection and ecosystem support goals are needed. The purpose of this project is to design, construct, and maintain two retention structures and restore approximately one mile of failed stream bank. This project integrates objectives of Olmsted County, the Department of Natural Resources and City of Rochester into a common project.
Minnesota Trout Unlimited, the Minnesota Land Trust, The Nature Conservancy, and Trust for Public Land will combine their expertise in six targeted watersheds to increase the resilience of remnant populations of brook trout unique to Southeast Minnesota. We will protect and enhance habitat in floodplains, along gullies, above steep slopes, and on bluffs to slow runoff, increase infiltration, and keep aquatic habitat productive.
RIM Wetlands - Restoring the most productive habitat in Minnesota will protect and restore approximately 325 acres of previously drained wetlands and adjacent native grasslands on approximately 5 easements across the State to restore wetlands and associated uplands for habitat and associated benefits. The Board of Water and Soil Resources (BWSR) will utilize the Reinvest in Minnesota (RIM) easement program in partnership with local Soil and Water Conservation District (SWCDs) to target, protect and restore high priority habitat.
The Reinvest in Minnesota (RIM) Wetlands Partnership Phase V protected and restored 2,041 acres of previously drained wetlands and adjacent native grasslands on 23 conservation easements. All easements have been recorded. $35,000 of funds from other sources were also used.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.
We propose identifying hot spots of groundwater chloride pollution of surface waters due to excessive road salt use, which is a long term source increasing chloride impairment of surface waters.
The Root (HUC 07040008) and Upper Iowa/Mississippi River – Reno (HUC 07060002 and 07060001) watershed Hydrologic Simulation Program – FORTRAN (HSPF) models currently simulate hydrologic and water quality processes through 2015. In order to support work to update the existing WRAPS report, the two HSPF models will be extended through 2021.
The contractor will use the Scenario Application Manager (SAM) tool to build water quality restoration scenarios for the Root River watershed using the Hydrologic Simulation Program FORTRAN (HSPF) model. The SAM tool simulates total suspended solids (TSS) and nitrogen reductions based on implementation of various best management practices.
This grant will fund about 80 project in six sub-watersheds (Headwaters of the Middle & South Branch, Money Creek, Headwaters of Upper Iowa River, Mill Creek, south Fork Root River, and Carey Creek). Projects to include grassed waterways, water and sediment control basins, grade stabilization structures, livestock waste projects, streambank projects and cover crops. Funding will also support staff time for project development and technical assistance for the cost-share projects.
This grant will fund an expected 44 projects in 4 subwatersheds (South Fork Root River, Crooked Creek, Rush-Pine and portions of the headwaters of the Middle and South Branch Root) and 2 DWSMAS (Chatfield and Utica). Projects include grassed waterways, WASCOBs, grade stabilization structures and cover crops, plus field walkovers, project development, and technical assistance. The anticipated sediment reduction from this work will be 2,285.5 tons, or 2.2% of the 10-year goal for the entire planning area.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
The Somali community in Rochester, MN, is one of the most connected cultural groups in the region.
Our project hopes to untangle the rich culture that is often hidden from the public sphere in Rochester,
Unity begins with knowing your neighbors. MN. Through the Humanities Center's Cultural Grant, we will
implement a program to inform and teach our fellow neighbors about the Somali culture. Our platform will be based on speakers, multimedia, tv
programming, and print.