The goal of this project is to establish data sets to evaluate the Aquatic Recreational Use of Mallard, Sucker, and Ozawindib Lakes in southeastern Clearwater County.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
The primary goal of this project is to accurately collect surface water quality data to help support the MPCA’s Intensive Watershed Monitoring efforts in the Lake Superior North Watershed.
CMSM opened its new permanent site with increased capacity to serve as an informal learning center that playfully engages children, families, and school groups in interactive experiences with the art and cultural heritage of southern Minnesota. With its current appropriation, CMSM is poised to strengthen its core as an institution that promotes arts and cultural heritage learning through continued
"This project will meet the following goals: develop, implement, and evaluate the impacts civic engagement outcomes for the Big Fork River Watershed; create a citizen understanding of the Watershed Restoration & Protection Strategy (WRAPS) and Total Maximum Daily Load (TMDL) process and the role citizens and stakeholders can play in attaining water quality restoration and protection; provide opportunities for citizens and stakeholders to assist local partners and state agencies in developing priorities for restoration as well projects to accomplish protection of high quality waters; and
To prepare a comprehensive plan for the renovation and preservation of the Bigfork City Hall, eligible for listing in the National Register of Historic Places.
Through the construction of new interactive exhibits and the creation of educational programming, the Duluth Children's Museum will highlight the community and culture of Duluth and the surrounding region. A climbable, playable model of Duluth's iconic canal lighthouses and an educational Ojibwe waaginogaan are among the planned new elements being added to the museum experience.
The Children's Discovery Museum in Grand Rapids, Minnesota aims to strengthen its highly successful School Service Program by retaining a Program development coordinator, changing core interactive exhibits and creating new curriculum for pre-school and K - 5 students in ten northern Minnesota counties.
The overall goal is to develop a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study that will address water quality impairments and maintain or improve water quality throughout the Clearwater River watershed. The study will identify sources of pollutants to the streams and lakes, allocate pollution reduction goals, and prioritize and identify implementation strategies to maintain or improve water quality in key lakes and streams in the watershed.
Publication, in book format, of a narrative history of a "company town," Silver Bay, Minnesota, based on interviews with longtime residents (interviews and transcriptions funded by a previous Arts and Cultural Heritage Fund grant) and on interviews previously collected by the Bay Area Historical Society.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will construct three watershed framework models built using the Hydrologic Simulation Program FORTRAN. These executable models will simulate hydrology at the 12-digit HUC subbasin scale. An HSPF model will be built for each of the following 8-HUC watersheds: Red Lake River (09020303) and the Clearwater River (09020305).
This project will provide fiscal resources for South St. Louis County Soil and Water Conservation District (SSLCSWCD) to participate and lead efforts to attain geomorphic data sets, dissolved oxygen assessments, culvert inventory, and civic engagement activities in three major watersheds, Nemadji River, South Lake Superior and St. Louis River. This work is currently being worked on as a part of the MPCA’s Watershed Restoration and Protection Planning efforts.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
Civic engagement is the primary goal of this project and will focus on 1) building knowledge about the watershed approach among Lake Superior-North watershed residents, 2) building a communication network to exchange knowledge, 3) building a sense of shared concern about watershed related issues through events, workshops, forums or other organized activities, and 4) building a trusted foundation for future water related work among a group of new collaborators.
This project Phase will collect data, background information, and watershed characteristics within the Red Lake River watershed. This information will be documented within the framework of early draft TMDL Reports (with background information, but no load calculations) for impaired reaches within this watershed and early draft protection plans for the areas in the watershed that are not currently impaired.
To hire a qualified and experienced HVAC engineer to evaluate current system preparatory to better control of the Clearwater County History Museum environment
Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) requests assistance from local partners to collect samples and field data at designated stream monitoring sites for the purpose of assessing water quality and calculating annual pollutant loads.
This project will collect intermediate watershed load monitoring data on the Bigfork River which is critical to the identification of stressors and assist in defining areas of concern within the Bigfork Watershed and its greater Rainy River Watershed. Itasca County SWCD will closely collaborate with Koochiching SWCD and MPCA on this project.
The Children’s Museum of Southern Minnesota (CMSM) will complete the innovative community engagement process started with the previous Legacy grant. CMSM will build upon the progress created with the previous Legacy grant by transitioning the team's focus to carrying-out of strategic access strategies that engage a diversity of community members in the exhibit development process, resulting in the completion of fabrication plans for exhibits and environments that are accessible; engaging; and reflect the diverse art, culture, and heritage of southern Minnesota.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
This project involves the water quality monitoring of, and data analysis for four major watersheds (8-digit Hydrologic Unit Codes) in the Rainy River Basin. This monitoring will assist in providing the water chemistry data needed to calculate annual pollutant loads for the Major Watershed Pollutant Load Monitoring Network (MWPLMN) and provide short term data sets of select parameters to other Agency programs.
This project will construct, calibrate, and validate three HSPF watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output time series for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.