The grant will use local data to develop stormwater planning options that prioritize, target, and measure the effectiveness of Best Management Practices and allow local city officials to make decisions on stormwater Best management Practices that reduce pollutants in the stormwatershed.
The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River Grand Rapids Watershed. Five lakes will be sampled, including Savanna, Shumway, Loon, Hay, and Washburn. Through this effort we will obtain information that will be useful in assessing the health of this watershed. This will be valuable in planning for future restoration and protection efforts that will ensure good water and environmental quality for Aitkin County.
This project will identify and prioritize opportunities to implement a multipurpose drainage management plan that will provide adequate drainage capacity, reduce peak flows and flooding and reduce erosion and sediment loading, improving water quality to the West Branch Rum River.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
Construct, calibrate, and validate three Hydrologic Simulation Program FORTRAN (HSPF) watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs).
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the St Louis River Watershed.
This project will implement five stormwater control BMPs and educate watershed landowners regarding proper management of stormwater control. These projects will serve to change behavior and perceptions of how stormwater may be managed, and demonstrate how easy changes may have a positive impact on land stewardship and water quality protection. 100 rain barrels will be distributed at a reduced cost to critical landowners.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
Northern white cedar wetland plant communities provide unique ecological, economic, and wetland functions, including high value timber, long-term carbon storage, winter refuge for deer and other wildlife, wildlife habitat, and thermal buffering for brook trout streams. However, these plant communities have been declining in Minnesota for decades mostly as a result of development impacts. The Minnesota Board of Water and Soil Resources is using this appropriation to continue efforts aimed at improving the quantity and quality of white cedar wetland plant communities in Minnesota.
The Aitkin County Soil and Water Conservation District will partner with local lake associations and other eligible community partners to reduce the impacts of storm water runoff and retain water on the land. We will implement a mini-grant program that will install rain gardens and native vegetation buffers along shorelines using deep-rooted native vegetation that will filter runoff, promote infiltration, and control stormwater runoff and soil erosion.
The Project and Outreach Coordinator will facilitate efforts within the watershed to provide landowner support and assistance in identifying areas in need of conservation plans and best management practices. The coordinator would use the Watershed Protection and Restoration Strategy Report and county water plans to target and prioritize outreach and education to maximize water quality benefits. This will greatly multiply the number of educated landowners in the watershed and increase the number of projects implemented.
Phase I built the foundation for the South Fork Crow River Watershed Restoration and Protection Strategy (WRAPS) and created a civic engagement plan. Civic engagement strategies were identified to create greater communication and watershed activities. Phase II provided the analytical and strategic foundation essential to prescribing protection and restoration strategies. These strategies focus on both protecting current fully supporting and restoring impaired surface water resources to water quality standards in the South Fork watershed.
Well-managed forests deliver the optimal quantity and quality of surface runoff and groundwater water recharge possible. This Forest Management and outreach program will help protect, preserve, and improve water quality and related water resources by hiring a Regional Clean Water Forester. The Forester will help LGUs in Technical Service Areas (TSA) 3 and 8 increase installation of water quality-related forestry practices.
The goal of phase 1 of this project is primarily to support organizational planning and coordination among project partners, forming and training a civic engagement team, creating a civic engagement strategic plan, holding two watershed kick off meetings and gathering and summarizing available water quality data. The completion of phase 1 will help provide significant momentum towards the completion of the future phases of the Watershed Restoration and Protection Strategy (WRAPS) process.