This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
Multiple water courses in the Buffalo River - Red River Watershed District are impaired for turbidity. These waterways include the Red River of the North, Wolverton Creek, Deerhorn Creek, Stoney Creek, South Branch Buffalo River, and the main stem of the Buffalo River. This project will provide a means of prioritizing areas of the watershed to implement conservation practices to reduce overland runoff contaminant loadings contributing to water quality impairments.
The Crow River is a major river system in Wright County that is of local and regional significance. It is a major recreation area in its own right but also flows into the Mississippi River 20 miles from the Minneapolis Drinking Water Plant intake. Elevated sediment levels in the river increases the cost of treating the river water and threatens fisheries habitat.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project will directly inform the Lake of the Woods (LoW )TMDL process by identifying nutrient reduction targets, a timeline of phosphorus loadings to the lake, and measures of historical in-lake variability (e.g., nutrients, biological communities). Results will complement and build on ongoing research efforts on internal loading and sediment core analysis.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will consist of identifying the candidate causes of biological stress and to develop and implement a public and stakeholder participation process that encourages local ownership of water quality problems and solutions. The Stressor ID process will be done using existing data, identifying data gaps, gathering new data, developing load duration curves, and refinement of the candidate causes. The civic engagement work will include compiling and reviewing existing data on community capacity and assessing that information.
This project will provide Agency staff, local partners and the citizen volunteers with a framework for building local capacity to design civic engagement and communication / outreach efforts. This will contribute to meaningful and sustained public participation in surface water protection and restoration activities throughout the watershed. MPCA staff, local partners and citizen volunteers will also be able to integrate the results of the biophysical and community assessment into strategies for improving water bodies on the MN 303d List of Impaired Waters
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project will complete an implementation plan, as required by the Minnesota Pollution Control Agency, for the Zumbro River turbidity TMDL project. It will also revise the Zumbro River Watershed Management Plan (completed 2007) to ensure it continues to reflect local needs, incorporates new information, and develops more effective linkages with related local, state and federal government programs.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
This project will continue to develop, and calibrate/validate the hydrology of an HSPF watershed model for the Thief River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval. The consultant will produce an HSPF watershed model that can readily be used to provide information to support conventional parameter TMDLs.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
This water quality improvement project involves the retrofit of county ditch #31 also known as Connelly Ditch. The capacity of the ditch is inadequate and there is a need to reduce sediment and peak flows to it.
Co-sponsorship and assistance with a portion of the financial support for the 9th & 10th Annual International Lake of the Woods Water Quality Forum (Forum) to be held on March 7-8, 2012 and March 13-14, 2013 at the Rainy River Community College in International Falls, Minnesota. The Forum will feature the latest information on research conducted by Canadian and U.S. researchers regarding the International Lake of the Woods waters.
This project will determine pre- and post-settlement nutrient trends from sediment chronology, fossil diatom assemblages, and from sediment profiles representing human history in the region (i.e., at least 150 years). Project activities include sample collection; sample preparation; diatom analysis; database creation and management; and data interpretation. Sample cores will be taken on the Lake of the Woods in five major bays (i.e., Four-mile, Muskeg, Sabaskong, Little Traverse, and Big Traverse) in the southern basin.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy to maintain or improve water quality within the LoW Watershed; and establish project and sub-basin work groups and/or focus groups to guide the MWRPP process.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
This project will include analysis of existing and newly collected water quality data to verify the impairments on the currently listed reaches and to determine the status of the remaining river reaches as being either impaired or currently meeting standards. Stakeholder involvement and public participation will be a focus throughout the Watershed Approach Project. The project provides an opportunity to assess and leverage the capacity for the local community to engage in the process of watershed management and to adopt protection and restoration practices.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Due to its high water quality, protecting Martha Lake is a prioirty for Wright County. A monitoring study of the tile system outlet that flows into Lake Martha revealed high amounts of dissolved phosphorus were entering the lake through the tile system. This validated the concerns of the Lake Martha Lake Association.
Through a long standing partnership, this project will continue to implement a process formalized with a 2010 Clean Water Fund Grant to conduct stormwater sub-watershed assessments. The goal of the sub-watershed assessments is to accelerate water quality improvements by focusing efforts in high priority areas. Specifically, subwatershed assessments are a tool used to identify the most effective urban stormwater conservation practice by location.
This project will establish a groundwater monitoring network in the 11 county metropolitan area. The network will provide information about aquifer characteristics and natural water trends by monitoring healthy aquifers (non-stressed systems). The project will also develop an automated system that captures groundwater level and water use data. This system will enhance evaluation of changes in aquifers that are stressed by pumping from existing wells.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The Mustinka River winds through five counties in west central Minnesota and empties into Lake Traverse, a border waters lake with excellent fishing and recreational opportunities. For several years, sections of the river have been negatively impacted from too much soil/sediment eroding from the land and washing away into the water. Excess sediment degrades aquatic habitat and feeds algae blooms.
This project continues a 2011 Clean Water Fund collaborative effort to develop a plan to reduce the amount of sediment washed into the river.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
This project will provide land and water managers in the Red River Basin with data and online tools to prioritize actions on the landscape that achieve water quality objectives identified in local and state plans. This will help identify strategically important locations for implementing erosion control and water management practices. Standardized watershed-based data products will be integrated into a web-based planning tool which will be added to the Red River Basin Decision Information Network (RRBDIN) being developed as part of the Red River Watershed Feasibility Study.
International Water Institute (IWI) staff will monitor 24 sites in the Bois de Sioux, Mustinka (2 sites), Buffalo (8 sites), Red Lake (4 sites), Sandhill (3 sites), Thief (2 sites), and Tamarac River (3 sites) Watersheds intensively over a 2 year period in an attempt to collect 25 samples per year at each site. If conditions allow for the collection of all planned samples, 1200 stream samples will be collected over the time period. Monitoring will include field measurements, observations, and at least three photographs during each site visit.
MN Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, work with regional partners to promote understanding and protection of watersheds, and organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The primary purpose of the project is to reduce soil loss from fields, improve the water quality of Roseau River Watershed District Ditch #3 by eliminating sediment deposition. This project will reduce maintenance costs along the ditch system by installing 29 sidewater inlets. The project will be a team effort with the Roseau County Soil and Water Conservation District and private landowners located along the ditch systems.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health with the assistance of the Board of Water and Soil Resources protects both public health and groundwater by assuring the proper sealing of unused wells.” Clean Water funds are being provided to home owners as a 50% cost-share assistance for sealing unused private drinking water wells.
The Lake of the Woods Watershed Assessment will include the waters of Warroad River and Willow Creek in Roseau County and Williams Creek and Bostic Creek in Lake of the Woods (LOW) County. This assessment project will focus on the collection of water chemistry and field parameters at the six key sites identified and modified by MPCA. One site on the Warroad River will have extra nutrient and chlorophyll analysis done. Sites are located in the lower reaches of each surface water system.
This project will collect additional water quality and flow data on tributaries on the South Fork Crow River and Buffalo Creek. Further assessment of these reaches will provide a better understanding of what impacts these tributaries have on the impaired South Fork Crow River and Buffalo Creek.