These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
The lack of sewage treatment in many small communities in Southeast Minnesota is causing surface water and groundwater pollution. Fourteen of these small communities will receive technical assistance provided by this project. These communities have community or individual straight pipes which are discharging raw sewage directly to the environment, surfacing sewage, or have sewage contaminating groundwater.
Spring Park watershed is over 225 acres. Most of the watershed has been fully developed into a variety of residential, commercial, and institutional land uses. Project funds would be utilized to conduct a watershed analysis with the goal of identifying pollutant load sources and potential areas for structural stormwater BMPs for future retro-fit projects to reduce instances of localized flooding, reduce peak storm flows, and improve the quality of stormwater runoff discharging into Crocker's Creek.
To be able to manage resources in the Blue Earth and Le Sueur Watersheds into the future and have a positive effect on water quality, resource managers need high quality accurate data to support decision making of best management practice (BMP) implementation. Digital elevation data is a valuable resource for modeling water flow, however in its current state it cannot represent water conveyance through features such as roadways. These flow barriers limit the accurate use of data for recently developed targeting tools identifying BMP suitability and effectiveness down to the field scale.