This project will evaluate best management performance and effectiveness to support meeting total maximum daily loads; develop standards and incorporate state of the art guidance using minimal impact design standards as the model; and implement a knowledge and technology transfer system across local government, industry, and regulatory sectors.
Staffing support to evaluate the performance of existing stormwater infiltration sites, as identified in the Minimal Impact Design Standards (MIDS) project. Monitor the range of existing infiltration devices in Minnesota and compare to design criteria, maintenance records, and quantify year-round infiltration rates. Develop and refine pretreatment options and standards for municipal stormwater treatment.
This project supports activities by Minnesota Pollution Control (MPCA) Watershed Division staff that provide technical assistance, project oversight, coordination, outreach and other agency activities associated with assessing, listing and conducting Total Maximum Daily Load (TMDL) studies throughout the State of Minnesota. Project also includes lab analysis, equipment, and fieldwork expenses associated with TMDL work at the MPCA.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
Agencies and stakeholders are working together to clean up contaminated sediments and restore aquatic habitat to the estuary in the St. Louis River Area of Concern within the Great Lakes Basin.
Staffing support for the development of permits that provide for implementation of Total Maximum Daily Load (TMDL) requirements at wastewater facilities and stormwater permittees.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities. The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
Support for the subsurface sewage treatment system (SSTS) program administered by the Minnesota Pollution Control Agency (MPCA). The MPCA offers grants to counties for SSTS program administration and special projects to improve SSTS compliance rates, and assistance for low-income homeowners with needed SSTS upgrades.
The Clean Water Council was created through the Clean Water Legacy Act (Minn. Stat. Ch 114D) which was signed into law June 2, 2006. The council’s role is to advise on the administration and implementation of the Clean Water Legacy Act. See the Council’s FY18-19 Clean Water Fund and Policy Recommendations Report (December 1, 2016). The 28-member Clean Water Council (Council) represents organizations with a major role in achieving clean water, enabling consensus building and coordination on a wide array of issues critical to the people of Minnesota.
This project will address United States Environmental Protection Agency (USEPA) comments on the Preliminary Draft Total Maximum Daily Load (TMDL) study and Minnesota Pollution Control Agency (MPCA) comments on the pre-public notice draft Watershed Restoration & Protection Strategy (WRAPS) report, and produce Public Notice Draft TMDL study and Public Notice Draft WRAPS report ready for public review and comment.
The project goal is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Surface Water Assessment Grant (SWAG) to conduct field and water chemistry monitoring at MPCA specified lake sampling locations and stream locations. This will be accomplished by collecting water samples at seven lake sites and eight streams in the Kettle and Upper St. Croix Watersheds, as well as compiling and submitting the required data, information and reports.
The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.
Samples will be taken from lakes and streams from the Kettle River Watershed. The sampling and monitoring of these waters will result in a better understanding of the water quality within the watershed. Having a better understanding of the water quality in the watershed can help when targeting where to put conservation projects on the ground.
This project will develop and present to the MN association of townships on stormwater best management practices and National Pollutant Discharge Elimination System (NPDES) stormwater permits.
This will fund a competitive grant program for sewer projects that will help protect or restore the water quality of waters in national parks located within Minnesota.
The Rainy River Basin WPLMN Sampling Program will focus on watershed load monitoring in the Big Fork River, Little Fork River, Rainy River-Rainy Lake, and Vermilion River watersheds. Four total staff will work on various portions of this agreement. The main objective is for one lead sampler and one backup sampler to collect water chemistry and field parameters for eight (8) sites, annually at various flows, especially peak flows, and utilize that data to determine the amount of pollutant load into each stream system.
This project will meet the following goals: develop, implement, and evaluate the impacts civic engagement outcomes for the Rainy River Headwaters and the Cloquet watersheds; create a citizen understanding of the Watershed Restoration & Protection Strategy (WRAPS) process and the role that citizens, lake associations, institutions of higher education, and other stakeholders can play in attaining water quality restoration and protection; provide opportunities for citizens and stakeholders to assist local partners and state agencies in developing priorities for projects to accomplish resto
The goal of this project is the development of a model of wild rice population dynamics, using RAMAS software, which mimics natural variability of population levels and calculates the probability of population extinction.
The overall goal of this project is to perform water quality monitoring and load calculation duties to accomplish Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) monitoring efforts at the seven sites within the Redwood and Cottonwood River watersheds as well as the Minnesota River site near Morton. To accomplish this goal the requested funds will provide for technician’s time, mileage, lab costs, supplies, as well as equipment calibration and upkeep.
This project is for Minnesota Legislative Clean Water Fund funding to engage citizens in local watershed monitoring, to work with regional partners to promote understanding and protection of watersheds, and to organize and facilitate gathering of scientific data all for the benefit of water quality in the Red River Basin.
The International Water Institute (IWI) will monitor 42 sites (3 basin, 12 major watershed, and 27 subwatershed) in the Red River and Upper Mississippi River Basins intensively during the contract period. There will also be 5 sites in the Red River Basin where mercury samples will be collected and sent to Minnesota Department of Health for analysis. The IWI will collect water samples across the range of flow conditions targeting sample collection at times of moderate to high flow.
The purpose of this project is to improve understanding of primary productivity in the Red River and the diversity and population structure of the algal communities occurring along the river system. This will be accomplished through taxonomic identification of periphyton and phytoplankton assemblages necessary for characterizing responses to nutrient gradients along the Red River of the North.
The goal of this project is to construct, calibrate, and validate a watershed model using the Hydrological Simulation Program FORTRAN (HSPF) model for the Upper/Lower Red Lake Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.
The Root River Watershed Pollutant Load Monitoring Network (WPLMN) project will continue existing efforts to calculate seasonal pollutant loads for the Root River. The Fillmore Soil and Water Conservation District (SWCD) will assist the Minnesota Pollution Control Agency (MPCA) with water quality monitoring and pollutant load calculations for five subwatershed sites. Samples will be collected using procedures described in the WPLMN standard operating procedures.
This project will focus on Watershed Restoration and Protetion Strategy (WRAPS) and Total Maximum Daily Load (TMDL) report development for the Rum River Watershed, which includes Mille Lacs Lake (the second largest lake in Minnesota) and the Rum River of which Mille Lacs Lake is the headwaters. The project will produce a plan that partners and citizens will be able to implement, a framework for citizen engagement, and a set of watershed management activities that will achieve water quality standards for all impairments within the watershed.
The project goal is to conduct water chemistry monitoring at one subwatershed site, one basin site, and one major watershed site in 2016 and 2017 based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
The Statewide Sediment Network was established to measure the levels of suspended sediment concentrations and particle size distributions at eight sites across Minnesota to evaluate the amount of sediment carried by rivers. USGS sample collection and laboratory analysis techniques provide a more rigorous, robust, and technically accurate measure of sediment in water than the current use of total suspended solids as the measure of sediment in water.
The goal of this project is to conduct water quality monitoring at the ten lakes within the Todd County portions of the Mississippi River Brainerd and the one lake within the Todd County portion of the Mississippi River Sartell. Sampling will be done once per month between May 2016 and September 2016 and then again once per month May 2017 through September 2017.
Cognizant to the needs of the stormwater community, a group that has engaged in stormwater research at the University of Minnesota (UMN) has developed a research program for the biennium that addresses pressing needs: a stormwater research roadmap and framework for priority needs, research required to improve stormwater pond maintenance, and information transfer related to these needs.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
The goal of this project is to calibrate, and validate three watershed models using the Hydrological Simulation Program FORTRAN (HSPF) model. The contractor will produce HSPF watershed models that can be further developed to provide information to support conventional parameter TMDLs. The contractor will clearly demonstrate that the models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
2016: Five locations will be monitored in support of the combined Vermilion Community College and Rainy River Community College 2016 – 2017 Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) Sampling Agreement. Water samples, field measurements, field images, and other observations will be obtained at each location during each sampling event.
This project will collect water samples at seventeen monitoring locations ranging in size from 23,173 acres (7 Mile Creek) to over 9 million acres (Minnesota River at St. Peter) as a part of the Watershed Pollutant Load Monitoring Network (WPLMN). The Minnesota State University - Water Resources Center (WRC) has been directly involved with the program and is familiar with the streams and hydrology of the region. In addition to monitoring, the WRC will review, manage and submit the data in formats provided by the Minnesota Pollution Control Agency (MPCA).