This project will develop, implement, and evaluate civic engagement activities within the Rainy River Headwaters and Cloquet watersheds. In addition, Lake County will also assist in expanding water quality monitoring efforts in support of the Watershed Restoration and Protection Strategy (WRAPS) process.
The goal of this project is to develop a Total Maximum Daily Load (TMDL) for all impaired stream reaches and lakes within the Long Prairie and Red Eye Watersheds.
This project will provide surface water quality data to the Minnesota Pollution Control Agency (MPCA) to inform the Watershed Restoration and Protection Strategies (WRAPS) update process. All locations are in the Douglas County portion of the Long Prairie Watershed. Sites have been targeted based on local knowledge and citizen concerns. A culvert inventory will also be completed through this project. This will provide flow path data that will be utilized in future water quality analysis and project designs.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
This project is to finalize the Total Maximum Daily Loads (TMDLs) and Watershed Restoration & Protection Strategies (WRAPS) for the Red Eye and Long Prairie Watersheds.
The purpose of this contract is to augment data collection efforts for the St. Louis River (SLR) Watershed Restoration and Protection Strategy (WRAPS) and for four impaired Duluth beaches. For the SLR WRAPS, activities include: attaining datasets for watershed stressors and geomorphic conditions, water quality gap monitoring, and a civic engagement component. Impaired beaches activities include: collection of field observational data, field water chemistry, and water quality samples for analytical analysis.
Beginning in June 2019, the St Louis River Watershed will start the second round of the Watershed Restoration and Protection Strategies (WRAPS) process. This project helps the Carlton County SWCD (SWCD) initiate a broader citizen participation process in the Watershed. The SWCD staff will be enabled to create a greater degree of public interest in and awareness of the general health of the Watershed. This work will create the foundation for greater citizen involvement in the planning and implementation of restoration and protection activities in the Watershed.
The objectives of this project are to update and extend the simulation periods of the St. Louis River and Cloquet River watershed Hydrologic Simulation Program – FORTRAN (HSPF) model and the Duluth urban area HSPF model and conduct recalibration of the hydrology and water quality simulations. The model updates will support work to update the existing Watershed Restoration and Protection Strategy (WRAPS) reports.
State resource agencies are implementing a delisting strategy for the St. Louis River Area of Concern (AOC) by completing the Remedial Action Plan (RAP). A suite of 80 management actions in the RAP were developed to address specific Beneficial Use Impairments (BUI) identified throughout the estuary. Removing these legacy impacts often involves restoring historically altered habits by manipulating sediment characteristics, restoring shoreline function, and constructing under water features.
This project will provide a protocol for prioritizing sites in the St. Louis Area of Concern (AOC ) for restoration based on site-specific bioavailability considerations. Despite large data collection efforts focused on sediment chemistry, the extent to which sediment with moderate levels of contamination is available for uptake into biota and therefore contributing to Beneficial Use Impairments (BUI)s is still largely unknown.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The goal of the St. Louis River Watershed Mercury Total Maximum Daily Load (TMDL) is to determine the mercury reductions needed to meet the water quality standards for mercury and support healthy consumption of fish by people and wildlife. Fishing is important in this watershed for economic and cultural reasons, including the exercise of tribal treaty rights; Fond du Lac’s 0.77 ng/L water quality standard protects subsistence fishing. This project will result in the development of the Mercury TMDL calculations and associated mercury source assessment.
The project provides the opportunity for the North Saint Louis Soil and Water Conservation District (NSLSWCD) to engage in efforts to increase public participation in the St. Louis River Watershed and participate in the planning and technical review of the Watershed Restoration and Protection Strategies (WRAPS) process. NSLSWCD contains the headwaters of the St. Louis River Watershed. The District’s knowledge of the area, communities, and organizations puts them in a unique position to work cooperatively in the watershed.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the St Louis River Watershed.
This project will provide technical, planning and engineering assistance to the MPCA for the development and implementation of the St. Louis River Remedial Action Plan (RAP). USACE and USEPA in partnership with the MPCA will administer work plans to complete a sediment assessment for Minnesota areas within Superior Bay, St. Louis Bay, Lower St. Louis River and the Upper St. Louis River, encompassing approximately 5,349 acres of the St. Louis River and Estuary.
The purpose of this project is to provide technical support to data generators and users of the Saint Louis River Area of Concern (SLRAOC) to support the Beneficial Use Impairment (BUI) removal process.
The St. Louis River watershed is one of the largest watersheds in northern Minnesota and the largest single contributing watershed to Lake Superior. Surface waters are abundant with 353 lakes and 97 streams segments. Large areas of forest and wetlands help to sustain areas of exceptional water quality. However, land use changes have degraded many lakes, rivers, and streams. 21 stream reaches have aquatic life impairments, as identified by high turbidity (1 reach), poor quality aquatic macro-invertebrate community (16 reaches), and/or poor quality fish community (12 reaches).
This project is completing Feasibility Study Addendums and updating other project documents for Thomson and Scanlon Reservoirs, and Mud Lake W sites in the St. Louis River Area of Concern (AOC).
This Partnership Agreement is a 5-year effort that will provide the technical, planning and engineering assistance for implementation of the 2013 St. Louis River Area of Concern Remedial Action Plan. Through this agreement the U.S. Army Corps of Engineers and MPCA will develop detailed work plans and construction design plans for numerous sites in the project AOC and assist with critical AOC-wide issues. • 21st Avenue West Restoration Site. Outcome will be preliminary to final engineering designs and costs ready for bid package development. • Knowlton Creek Site.
USGS will make streamflow discharge measurements at lowflow measuring stations throughout the state. Measurements will be made during lowflow conditions. On average 100 measurements will be made during FY2012. Stream flow measurements will be entered into the USGS database and made available on the USGS Low Flow Data for Minnesota Streams website.
The United States Environmental Protection Agency (USEPA) requires the Minnesota Pollution Control Agency (MPCA) to carry out the Total Maximum Daily Load Program (TMDL) in the state of Minnesota. Minnesota has an abundance of lakes and river reaches, many of which will require a TMDL study. In an effort to expedite the completion of TMDL projects, the MPCA constructs watershed models. These models support the development of TMDL studies for multiple listings within a watershed. In 2017 the Lake of the Woods (LOW) watershed HSPF model was extended through 2014.
The purpose of this work is to develop a Watershed Restoration and Protection Strategy (WRAPS) and associated Total Maximum Daily Load (TMDL) documents for the Lower Rainy River and Rainy River Rainy Lake Watersheds.
This Sauk River Watershed District project will conduct the Whitney Park river clean-up, adopt a river program and other community events as part of their healthy living programs; will collaborate with the city of St. Cloud to install a rain garden demonstration site at Whitney Park; use local radio and public television stations to promote the District’s “neighborhood rain garden initiative” and other incentive programs.
This project will include analysis of existing and newly collected water quality data to verify the impairments on the currently listed reaches and to determine the status of the remaining river reaches as being either impaired or currently meeting standards. Stakeholder involvement and public participation will be a focus throughout the Watershed Approach Project. The project provides an opportunity to assess and leverage the capacity for the local community to engage in the process of watershed management and to adopt protection and restoration practices.
This project will revise a recently completed draft Total Maximum Daily Load (TMDL) report for the Lower Minnesota River Watershed Project. The revision is to correct wasteload allocations for regulated stormwater entities.
The goal of this project is to develop draft Total Maximum Daily Load (TMDL) computations for six impaired lakes and two impaired streams, and to provide TMDL development documentation for selected draft TMDL report sections.
This project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and LeSueur County areas of the Lower Minnesota River watershed.
The project will plan, implement, and report on a community engagement strategy for identifying community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of Watershed Restoration and Protection Strategies (WRAPS) input for the Sibley, Nicollet, Renville, McLeod, Rice, and Le Sueur County areas of the Lower Minnesota River watershed.
This project will address Minnesota Pollution Control Agency (MPCA), United States Environment Protection Agency (EPA), and public comments on draft Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports, preliminary draft TMDL studies, and public noticed TMDL studies and WRAPS reports for the Lower Red River Watershed and the Lake of the Woods Watershed and produce final versions of the TMDL studies and WRAPS reports for each watershed.
This project addresses six lakes that have aquatic recreation impairments and one creek reach that has a bacteria impairment for E. coli. The project will evaluate the water quality impairments, complete pollutant source assessments, and establish loading capacities and allocations for the impairments.
This project will develop draft Total Maximum Daily Load (TMDL) studies addressing seven impaired lakes in the Lower Minnesota River Watershed (Fish, Pike, O’Dowd, Thole, Schneider, Titlow and Cleary Lakes). TMDLs will describe the impairment in each lake and water quality targets, and will include a phosphorus source assessment, a lake response model and supporting report components that document assumptions and methodologies, and a TMDL equation with completed load allocations, wasteload allocations, and margin of safety for each impairment.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Phase 2 of the Marsh River Watershed Restoration and Protection Strategy (WRAPS) project includes: continued civic engagement; production of the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; and production of the WRAPS report, which identifies implementation strategies that will maintain or improve water quality in many lakes and streams throughout the watershed.
The goals of Phase I of the Marsh River Watershed (WRW) Watershed Restoration and Protection Strategy (WRAPS) project are to: 1) gather or develop watershed data needed for the development of the WRAPS project; 2) establish project and sub-basin work groups, develop a social outcomes strategy, and develop a civic engagement evaluation strategy to guide the WRAPS project; and 3) begin to identify, create, and organize tools that can be used to determine potential stressors and priority management areas.
Martin Soil and Water Conservation District (SWCD) is proposing to monitor six lakes sites and two stream sites in the Blue Earth River watershed. The lake sites will be monitored by kayak and the stream sites will be monitored from the shore. Sites will be analyzed for field conditions and water chemistry. Martin SWCD will subcontract with Faribault SWCD to monitor fourteen stream sites and with Blue Earth SWCD to monitor one lake site and three stream sites.
Martin SWCD is proposing to monitor three lakes sites and three stream sites in the East Fork Des Moines River watershed. The lake sites will be monitored by kayak and the stream sites will be monitored from the shore. Sites will be analyzed for field conditions and water chemistry.