To enhance the Creative Arts building on the fairgrounds in order to improve the arts experience for fairgoers. The Freeborn County Fair will replace archaic lighting, add glass display cabinets, add a new display area of pre-school art, and provide musical performances.
To provide arts and heritage programming by local artists. Programming will include story-telling, ethnic music, demonstrations of period culture, lathe turning, spoon carving, and spinning.
To restore the Freeman Doud Cabin and Sunnyside School, located on the Beltrami County fairgrounds. During the fair, visitors will be able to able to observe the log cabin restoration and chinking process. Display boards will depict the history of the cabin, show where it was built on Lake Bemidji, and acquaint people with the importance of preserving this history.
Freshwater sponges from Minnesota will be collected using citizen scientists thereby stimulating STEM education. Compounds produced by sponges will be tested against invasive species such as zebra mussels.
River Watch (RW) enhances watershed understanding and awareness for tomorrow’s decision-makers through direct hands-on, field-based experiential watershed science. High School based teams throughout the Minnesota River Basin participate in a variety of unique and innovative watershed engagement opportunities such as Water Quality Monitoring and Macroinvertebrate surveys that are suited to their school, community, and watershed needs.
The Frogtown area of St. Paul is a culturally diverse, low-income neighborhood having less green space per child than any other neighborhood in the city and was recently identified as an area in need of a new park. This appropriation is being used by The Trust for Public Land, in partnership with the City of St. Paul, to acquire a portion of twelve acres of a currently vacant space in the area to establish the multi-purpose Frogtown Farm and Park.
Today's request to the MN Humanities Center for Page to Publishinggrows our former Community Editors program from 12 sessions of compressed writing and editing skill building, to a comprehensive 20-session literary arts pathway for BIPOC artists. To launch the program, a call for Teaching Artists will go out in September, with a goal to have five leaders on board by November. At the same time, we will promote the upcoming workshop opportunities to communities via networks of former Community Editors, through libraries in primarily BIPOC communities, and other means.
This project will layer hydrologic, hydraulic, geomorphic, and pollutant loading analysis with existing countywide PTMApp outputs to identify the four highest priority areas for BMP implementation in an eastern Nicollet County ravine system experiencing dramatic mass wasting events. Three alternatives for each priority site will be presented, including an evaluation of water quality benefit, construction costs, and a cost-benefit summary.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The Pioneer Mine Site, listed in the National Register of Historic Places, was improved with the repair of the existing furnaces in the Miners Dry and Shaft Houses. The furnaces are tied in with a fire suppression system and a security system. Installation of expanded steel across three doors, application of adhesive and boards around Shaft House base and removal of surrounding brush provides added protection from insect, animal and human invasion. Destruction by nature and vandals has been minimized.
This is a project to to proactively address future threats to safe drinking water. This project will incorporate findings and recommendations from the Future of Drinking Water report to assess, prioritize, and manage drinking water risks. Through this project, a voluntary statewide plan for protecting drinking water will be developed. Additional outcomes from this project include public health policies and an action plan.
Varney Lake is owned and maintained by the City of white Bear Lake as part of its stormwater collection system. The City will excavate approximately 10,000 cubic yards of polycyclic aromatic hydrocarbons (PAH) contaminated sediment from Varney Lake (which is located in a residential portion of the City) and manage the sediments on site by encapsulating the sediment in a berm covered with clean top soil. The encapsulated sediment will be managed as a solid waste in what the MPCA refers to as a limited use solid waste landfill (Facility).
This project will remove accumulated sediment from two Stormwater Treatment Ponds in Circle Pines that were constructed in the 1970’s. Recent testing of the sediments indicates that Tier 2 and 3 PAH compounds were found in the sediment. The most recent estimate for the volume of material that will be removed is 2,400 Cubic Yards.
This project will finalize HSPF watershed model construction and complete the calibration/validation process. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
This project will maximize the utility and usefulness of three HSPF models that have been constructed and calibrated for hydrology. The contractor will identify and reduce parameterization errors in the following three HSPF models: 1) Buffalo River Watershed, 2 ) Thief River Watershed, 3) Bois de Sioux-Mustinka Watersheds. This will result, not only in a better hydrology calibration, but will also improve each of the models’ ability to more accurately estimate sediment and pollutant loads and concentrations.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate a watershed model using Hydrologic Simulation Program FORTRAN (HSPF). The project will result in a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
The goal of this project is to supplement and refine the Deer Creek Watershed TMDL Report and Implementation Plan project with detailed determinations of critical source areas and prioritization of the associated management practices, facilitated by additional meetings with local resource managers and validated with a field survey. Completed work will more fully inform the TMDL report and TMDL implementation plan on critical source areas of sediment and quantify those sources.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
This phase of the project will complete the analysis of existing and newly collected water quality data in the Red River of the North-Grand Marais Creek watershed and also verify the impairments on the currently listed reaches and determine the status of the remaining river reaches as being either impaired or currently meeting standards. Stakeholder involvement and public participation will be a primary focus throughout the project.
Groundwater sample collection and analysis will be conducted for contaminants of emerging concern (CEC) at large subsurface treatment systems (LSTS) and rapid infiltration basins (RIB), using an enzyme linked immunosorbent assay (ELISA) methodology. Results from the ELISA analysis will be reported to the Minnesota Pollution Control Agency (MPCA) and used to conduct follow-up investigations at a select number of these sites.
The stream monitoring will follow the stream monitoring parameters and frequency tables outlined in the Surface Water Assessment Grant (SWAG) Request for Proposals (RFP). Specifically over the two-year grant period, monitoring will include 19 sets of field measurements for specific conductance, temperature, pH, dissolved oxygen, secchi tube readings, and one upstream photograph at each visit.
Monitoring the health of Minnesota rivers is vital in determining, maintaining, and improving the health of the rivers for the environment and public use. The scope of this project is to collect surface water chemistry samples at designated sampling locations during appropriate time periods and at appropriate frequencies during these time periods for 1 year beginning in February 2015. The data collected and submitted to MPCA will provide information necessary to determine stream characteristics and calculate water quality pollutant loads.
Groundwater sample collection and analysis will be conducted for contaminants of emerging concern (CEC) at large subsurface treatment systems (LSTS) and rapid infiltration basins (RIB), using an enzyme linked immunosorbent assay (ELISA) methodology. Results from the ELISA analysis will be reported to the MPCA and used to conduct follow-up investigations at a select number of these sites.
This grant will cover all components of water chemistry sampling for pollutant load monitoring at four sites. Of those four sites, two of them are subwatershed sites that will be monitored seasonally and two of them are basin/major watershed sites that will be monitored year round. The Monitoring Coordinator for the Sauk River Watershed District will be responsible for sample collection, data management tasks, attending weekly call in meetings and will coordinate additional help from other staff members and/or interns if needed.
The purpose of this monitoring project is to maintain water quality data collection, build on local partnerships, and develop a better of understanding of what impacts the rivers located in central Minnesota.
Sherburne Soil and Water Conservation District (SWCD) will subcontract with Clearwater River Watershed District (CRWD) to cooperatively coordinate monitoring of three locations within the Mississippi River (St. Cloud) Watershed. A total of four staff (two from each district) will communicate to ensure that the locations are monitored according to the WPLMN Standard Operating Procedures (SOPs) for AIS and non AIS sites
The goal of the High Island Creek Watershed Pollutant Load Monitoring project is to assist the Minnesota Pollution Control Agency (MPCA) with meeting the objectives of the Watershed Pollutant Load Monitoring Network (WPLMN). This will be accomplished by providing staff support throughout fiscal years 2016 and 2017 to conduct water chemistry monitoring at two specified stream locations from ice out through October 31 capturing snow melt, rainfall events and base flow conditions.
This project involves the water quality monitoring of, and data analysis for four major watersheds (8-digit Hydrologic Unit Codes) in the Rainy River Basin. This monitoring will assist in providing the water chemistry data needed to calculate annual pollutant loads for the Major Watershed Pollutant Load Monitoring Network (MWPLMN) and provide short term data sets of select parameters to other Agency programs.