The DNR is working with local communities and an interagency team to define, prioritize, and establish groundwater management areas in Minnesota. Groundwater management areas will have increased data collection and monitoring that allow the state and local communities to understand water supplies, uses, limitations, and threats to natural resources that depend on groundwater. This information will support detailed aquifer protection plans that ensure equitable and sustainable groundwater and drinking water use for the future.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
The DNR works with the Minnesota Geological Survey (MGS) to develop County Geologic Atlases to convey geologic and hydrogeologic (groundwater) information and interpretations to government units at all levels, but particularly to local governments, as well as private organizations and citizens. The MGS focuses on geology (Part A reports) and DNR focuses on groundwater (Part B reports).These studies provide information about the region’s geology and groundwater’s presence, direction of flow, natural quality, age, and pollution sensitivity.
The Minnesota County Geologic Atlas program is an ongoing effort begun in 1982 that is being conducted jointly by the University of Minnesota's Minnesota Geological Survey and the Minnesota Department of Natural Resources (DNR). The program collects information on the geology of Minnesota to create maps and reports depicting the characteristics and pollution sensitivity of Minnesota's ground-water resources.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will determine the magnitude and sources of pollutants in Little Rock Creek and will estimate the reductions in loadings that are needed in order for the stream reaches to support cold water fish assemblages and attain water quality standards.
The DNR works with the Minnesota Pollution Control Agency and the Minnesota Department of Health to determine the level of contamination from mercury and other harmful chemicals in fish from Minnesota's lakes and rivers and to track the success of efforts to reduce mercury pollution. Clean Water Legacy funding is being used to significantly increase (more than double) the number of lakes and rivers that are assessed for mercury contamination on an annual basis. Fish are collected during DNR fishery surveys, processed for laboratory testing, and analyzed for contaminants.
The Minnesota DNR and the Minnesota Forest Resources Council work with forest landowners, managers and loggers to implement a set of voluntary sustainable forest management guidelines that include water quality best management practices (BMPs) to ensure sustainable habitat, clean water, and productive forest soils, all contributing to healthy watersheds. This project will monitor the implementation of these forest management guidelines and BMPs on forested watersheds in MN.
The Index of Biological Integrity (IBI) is a tool that can identify water pollution problems based on how the type and abundance of certain species in a biological community vary from expected conditions. The Minnesota Pollution Control Agency currently uses IBIs for fish and macroinvertebrates (stream-dwelling insects and other critters) to help determine whether streams and rivers are impacted by water pollution.
This project will create a high accuracy elevation dataset - critical for effectively planning and implementing water quality projects - for the state of Minnesota using LiDAR (Light Detection and Ranging) and geospatial mapping technologies. Although some areas of the state have been mapped previously, many counties remain unmapped or have insufficient or inadequate data. This multi-year project, to be completed in 2012, is a collaborative effort of Minnesota's Digital Elevation Committee and partners with county surveyors to ensure accuracy with ground-truthing.
This project will develop a Watershed Restoration and Protection Strategy (WRAPS) report as well as Total Maximum Daily Load (TMDL) studies where needed. The TMDLs will provide the quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for the impairments within the watershed. Strategies for protecting the unimpaired waters within the watershed will also be included.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project will establish a web-based permitting system to capture essential water appropriation information. The system will include an online permit application process for water use and other permits. The online system will streamline the permitting process for applicants and significantly reduce staff time correcting and managing permit applications and water use reports that are incomplete or have incorrectly calculated permit fees. The use of technology in the application and reporting process will also eliminate staff time needed to enter data and scan and route documents.
State law (M.L. 2011, First Special Session, Ch. 6) directs restoration evaluations to be conducted on habitat restoration projects completed with funds from the Parks and Trails Fund (M.S. 85.53). The Minnesota Department of Natural Resources (DNR) is responsible for convening a Restoration Evaluation Panel containing at least five technical experts who will evaluate a sample of up to 10 habitat restoration projects annually. The Panel will evaluate the restorations relative to the law, current science, stated goals and standards in the restoration plans, and applicable guidelines.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality in the Rum River Watershed. Local Partners will lead various portions of this project and a hired onsultant will be subcontracted to write selected TMDL protection plans.
The purpose of the project is to collect data to represent the ambient condition of the lakes and streams of the Rum River Watershed within Mille Lacs, Isanti and Sherburne Counties that is needed to determine if thresholds set to protect designeated uses, such as aquatic recreation and aquatic life, are being met .
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
Stream flow information is essential for understanding the state of Minnesota's waters. Clean water funding has allowed the DNR to expand a network of stream gages that support planning and implementation for clean water protection and restoration. These gages are also used as part of the interagency Flood Forecasting/Warning System.
The Minnesota Department of Natural Resources (DNR) and Minnesota Pollution Control Agency (MPCA) each collect similar information on streams in Minnesota such as water quality, fish species presence, or the quality of fish habitat. For example, the DNR might sample stream fish to assess whether the agency’s management activities such as fishing regulations or stocking are creating good angling opportunities for the public, while MPCA might sample fish to assess whether a stream meets regulatory standards for a healthy fish community.
The goal of this project is to assess groundwater sustainability in the I-94 corridor between the Twin Cities and St. Cloud due to the corridor's significant expected growth, the inerent natural limits of groundwater, and the vulnerability of groundwater to contamination.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
The Watershed Health Assessment Framework is a web-based tool for resource managers and others interested in the ecological health of Minnesota’s watersheds. The framework uses five ecological components to organize and deliver information about watershed health conditions in Minnesota. The five components are: hydrology, connectivity, biology, geomorphology, and water quality. The WHAF website strives to make complex issues easier to visualize. An interactive map delivers 27 health scores organized by the five components.
This project delineates and maps watersheds (drainage areas) of lakes, rivers, streams, and wetlands for the state of Minnesota and provides watershed maps in digital form for use in geographic information systems. These maps become the basis for clean water planning and implementation efforts.
The DNR's Regional Clean Water Specialists and Area Hydrologists work with other state agencies and local partners to help identify the causes of pollution problems and determine the best strategies for fixing them. A statewide coordinator works with the DNR and external partners to ensure funds are spent in the most effective and efficient manner to meet the State's clean water goals.
The DNR provides technical support to watershed managers and landowners regarding drainage issues. Drainage experts are using a state of the art computer model to look at cumulative impacts of drainage and land-use practices and determine the benefits of site-specific best management practice. This work is with multiple partners and at multiple scales.