All Projects

Showing 1 - 12 of 12 | Export projects
2018 Fiscal Year Funding Amount
$1,375,000
2017 Fiscal Year Funding Amount
$1,375,000
2016 Fiscal Year Funding Amount
$1,375,000
2015 Fiscal Year Funding Amount
$1,375,000
2014 Fiscal Year Funding Amount
$1,375,000
2013 Fiscal Year Funding Amount
$1,500,000
2012 Fiscal Year Funding Amount
$1,500,000
2011 Fiscal Year Funding Amount
$525,000
2010 Fiscal Year Funding Amount
$600,000
Fund Source

The DNR is working with local communities and an interagency team to define, prioritize, and establish groundwater management areas in Minnesota. Groundwater management areas will have increased data collection and monitoring that allow the state and local communities to understand water supplies, uses, limitations, and threats to natural resources that depend on groundwater. This information will support detailed aquifer protection plans that ensure equitable and sustainable groundwater and drinking water use for the future.

Recipient
Tetra Tech, Inc.
2012 Fiscal Year Funding Amount
$4,999
Fund Source

This project will develop and execute three point source related scenarios for the Chippewa River watershed using an existing HSPF watershed model. This project will also support the review of the HSPF Modeling Guidance Document.

2017 Fiscal Year Funding Amount
$0
2016 Fiscal Year Funding Amount
$0
2015 Fiscal Year Funding Amount
$0
2014 Fiscal Year Funding Amount
$1,808,000
Fund Source

Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development.

Recipient
RESPEC
2014 Fiscal Year Funding Amount
$128,887
Fund Source
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
Recipient
RESPEC
2011 Fiscal Year Funding Amount
$214,963
Fund Source

This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.

Recipient
Tetra Tech
2015 Fiscal Year Funding Amount
$155,000
Fund Source

The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.

Recipient
Tetra Tech
2015 Fiscal Year Funding Amount
$100,000
Fund Source

The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$109,928
Fund Source

The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$19,996
Fund Source

The goal of this project is to extend through 2016, calibrate, and validate the existing watershed model using Hydrological Simulation Program FORTRAN (HSPF) for the Pomme de Terre River Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) studies.

2018 Fiscal Year Funding Amount
$248,238
2017 Fiscal Year Funding Amount
$223,000
2016 Fiscal Year Funding Amount
$223,000
2015 Fiscal Year Funding Amount
$190,000
2014 Fiscal Year Funding Amount
$190,000
2013 Fiscal Year Funding Amount
$235,000
2012 Fiscal Year Funding Amount
$235,000
2011 Fiscal Year Funding Amount
$190,000
2010 Fiscal Year Funding Amount
$180,000
Fund Source

This project delineates and maps watersheds (drainage areas) of lakes, rivers, streams, and wetlands for the state of Minnesota and provides watershed maps in digital form for use in geographic information systems. These maps become the basis for clean water planning and implementation efforts.

2018 Fiscal Year Funding Amount
$1,567,033
2017 Fiscal Year Funding Amount
$1,940,000
2016 Fiscal Year Funding Amount
$1,624,000
2015 Fiscal Year Funding Amount
$1,591,245
2014 Fiscal Year Funding Amount
$1,750,000
2013 Fiscal Year Funding Amount
$1,630,000
2012 Fiscal Year Funding Amount
$1,630,000
2011 Fiscal Year Funding Amount
$1,182,500
2010 Fiscal Year Funding Amount
$689,000
Fund Source

The DNR's Regional Clean Water Specialists and Area Hydrologists work with other state agencies and local partners to help identify the causes of pollution problems and determine the best strategies for fixing them. A statewide coordinator works with the DNR and external partners to ensure funds are spent in the most effective and efficient manner to meet the State's clean water goals.

2018 Fiscal Year Funding Amount
$176,762
2017 Fiscal Year Funding Amount
$202,000
2016 Fiscal Year Funding Amount
$202,000
2015 Fiscal Year Funding Amount
$185,000
2014 Fiscal Year Funding Amount
$185,000
2013 Fiscal Year Funding Amount
$230,000
2012 Fiscal Year Funding Amount
$230,000
2011 Fiscal Year Funding Amount
$95,000
2010 Fiscal Year Funding Amount
$85,000
Fund Source

The DNR provides technical support to watershed managers and landowners regarding drainage issues. Drainage experts are using a state of the art computer model to look at cumulative impacts of drainage and land-use practices and determine the benefits of site-specific best management practice. This work is with multiple partners and at multiple scales.