The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
This project will complete a Total Maximum Daily Load Implementation Plan for the watersheds of Big Sandy and Minnewawa Lakes. This restoration plan will provide pollution reduction and watershed management strategies that are developed with input from stakeholders in the watersheds.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
This project will provide fiscal resources for South St. Louis County Soil and Water Conservation District (SSLCSWCD) to participate and lead efforts to attain geomorphic data sets, dissolved oxygen assessments, culvert inventory, and civic engagement activities in three major watersheds, Nemadji River, South Lake Superior and St. Louis River. This work is currently being worked on as a part of the MPCA’s Watershed Restoration and Protection Planning efforts.
This project will construct, calibrate, a set of HSPF watershed models covering the entire area of the Lake of the Woods drainage, including the Rainy River watershed. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will clearly demonstrate that these models generate predicted output timeseries for hydrology which are consistent with available sets of observed data.
Deer Creek has been identified as an impaired water body. This project will quantify the reductions in pollutant loading that would be necessary to bring water quality in the creek to an acceptable level. The project also includes collection of any additional data needed for stream channel modeling scenarios.
This project will complete a TMDL equation and report and an implementation plan for Deer Creek. The TMDL report will describe turbidity impacts to aquatic life uses of Deer Creek, correlate turbidity to other pollutants (sediment, suspended solids, etc.), describe and quantify unique turbidity/sediment stressors which include groundwater influences, legacy impacts of the watershed and stream channel, significant in-stream and near stream sources (slumps, bank erosion, etc.) and upland contributions.
This project is the continuation of efforts to restore and protect watersheds and streams in Minnesota’s Lake Superior coastal region. The project provides the means to evaluate water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for impairments, and to evaluate and recommend protection strategies for high quality water resources. It also leverages and encourages adoption of locally driven solutions to watershed management and protection.
This project is for the Duluth Streams Urban Watershed Restoration and Protection Strategy (WRAPS). The project is a core part of the WRAPS and Total Maximum Daily Load (TMDL) development for the Duluth Metropolitan Area (DMA).
The principal goal of this project is to fill critical data gaps and to establish a participatory watershed management framework for the Duluth Metropolitan Area (DMA) that mimics the statewide Watershed Restoration and Protection Strategy (WRAPS) process.
The purpose of the project is to fill critical data gaps - this data will provide a foundation for future development of watershed models, Total Maximum Daily Load (TMDL) reports and the creation of a Watershed Restoration and Protection Strategy (WRAPS) report.
The goal of this project is to construct, calibrate, and validate one fine-scale Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Duluth Watershed Restoration and Protection Strategy (WRAPS) project area for the simulation period 1995–2012. In addition, an existing condition (post-2012 flood) model scenario will be developed for use in WRAPS development. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter TMDLs.
This project will provide the data necessary to assess Eagle Lake. Assessment parameters will include chl-A, Total Phosphorous, secchi disk readings, temperature (2' interval), conductivity (2' interval), pH (2' interval), and dissolved oxygen (2' interval). These samples will be collected monthly from May through September.
Ballast water - water carried in tanks on ships to help provide stability and aid steering - is likely the single greatest source for introduction of non-native and invasive aquatic species. Ballast water is collected in one body of water and discharged into another body of water, usually large distances apart. At least one new invasive species is found in the Great Lakes every year, with Lake Superior being particularly at risk. Scientists from the U.S.
This project will support Minnesota's condition monitoring strategy through the collection of water quality data on streams and rivers in the Nemadji River watershed. The Nemadji River watershed is located in southeastern Carlton County and northeastern Pine County. Water quality samples will be collected primarily during weather-related events that affect stream flow such as snowmelt and rainfalls.
BWSR will administer funding to eligible County projects that provide funds and other assistance to low income property owners to upgrade or replace Noncompliant Septic Systems. BWSR will also manage annual reporting completed by each County.
The goal of this project is to supplement and refine the Deer Creek Watershed TMDL Report and Implementation Plan project with detailed determinations of critical source areas and prioritization of the associated management practices, facilitated by additional meetings with local resource managers and validated with a field survey. Completed work will more fully inform the TMDL report and TMDL implementation plan on critical source areas of sediment and quantify those sources.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project involves the water quality monitoring of, and data analysis for four major watersheds (8-digit Hydrologic Unit Codes) in the Rainy River Basin. This monitoring will assist in providing the water chemistry data needed to calculate annual pollutant loads for the Major Watershed Pollutant Load Monitoring Network (MWPLMN) and provide short term data sets of select parameters to other Agency programs.
The goal of this project is to complete the calibration/validation process of Hydrologic Simulation FORTRAN (HSPF) watershed models for the Lake of the Woods/Rainy River Basin.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
This project will construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs) at the Big Fork River and Little Fork River watersheds.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.
This project will gather watershed data necessary for the development of a comprehensive watershed management plan with parameter-specific thresholds that will maintain or improve water quality for the Kawishiwi Watershed.
Project between Minnesota Department of Natural Resources and United States Army Corp of Engineers at Knowlton Creek Watershed to address a large amount of sediment deposited into the St. Louis River Area of Concern (AOC).
The Koochiching County SWCD staff will collect water chemistry and field parameters at specific times to determine amount of contaminant load into each stream. These sites will coincide with locations where stream flow data is also being collected. This project will focus on watershed load monitoring in both the Big Fork and Little Fork River watersheds.
This project provides fiscal resources for Lake County Soil and Water Conservation District for civic engagement activities in the Lake Superior South, North, and Cloquet watersheds for Watershed Restoration and Protection Strategies (WRAPS). This project also includes provide funding for water chemistry monitoring assistance and diagnostic field work that will fill identified monitoring gaps and stressors within the Lake Superior South watershed.
This project, beginning in Spring of 2014 and lasting until December 2015, will collect water quality data for 16 sites (7 lakes and 4 stream sites) within the Rainy River - Headwaters Major Watershed as part of the 10-year cycle for monitoring Minnesota's waters. Due to the large number and geographic extent of monitoring sites Lake County Soil and Water Conservaion District (SWCD) has coordinated site selection with North St. Louis County Soil and Water Conservaion District (SWCD) and will monitor sites within the southwestern (Kawishiwi River) portion of the watershed.
The goal of this project is to assess and leverage the capacity for the local community to engage in the process of watershed management in the Lake Superior Basin within Lake County and to adopt protection and restoration practices.
The Rainy River - Rainy Lake, Rainy River - Baudette and Rapid River Watershed Assessments will include the waters of the Baudette River, Black River, Peppermint Creek, Rapid River, Rat Root River and Winter Road River in Koochiching and Lake of the Woods Counties. This assessment focuses on collection of water chemistry and field parameters at the 12 key sites identified and modified by the Minnesota Pollution Control Agency (MPCA). Five of the sites will have extra total phosphorus and chlorophyll analysis completed as identified by the MPCA for collecting river nutrients.
The Minnesota Pollution Control Agency (MPCA) is a co-sponsor and assists with a portion of the financial support for the International Rainy River-Lake of the Woods Watershed Forum.
Improved levels of civic engagement and community participation in support for the Watershed Restoration and Protection Strategy (WRAPS) processes in the St. Louis River, Lake Superior South, and Cloquet River Watersheds. Monitoring plans and compiled field data will be provided and summarized that will aid in the future completion of Total Maximum Daily Load Reports (TMDLs) in these watersheds and in the Lake Superior North Watershed.
This project will develop, implement, and evaluate civic engagement activities within the Rainy River Headwaters and Cloquet watersheds. In addition, Lake County will also assist in expanding water quality monitoring efforts in support of the Watershed Restoration and Protection Strategy (WRAPS) process.