The goal of the project is to complete the dataset for the assessment of Aquatic Recreation Use in Cedar Lake by monitoring total phosphorus, chlorophyll-a, and secchi depth.
The Chisago Soil and Water Conservation District has been successful in implementing Best Management Practices in certain targeted locations within the county, including the prioritized and assessed areas of Chisago City, Lindstrom, and Center City. However, there are many areas that want to implement conservation projects but aren't within targeted areas. This award will empower community partners, especially lake associations, to award grants for rain gardens, shoreline buffers, and other worthwhile projects to improve water quality.
The Benton County Water Plan advisory committee has the goal of protecting groundwater resources in Benton County. One of the methods identified is to seal unused wells. In 2013, Benton Soil and Water Conservation District completed an aggressive campaign to identify unused wells. We used several sources to locate potential wells, completed site visits for many wells and collected site information to assisting in prioritizing limited cost share resources.
The Ann River Watershed is a sub-watershed of the Snake River Watershed located within the St. Croix River Basin. The Ann River watershed includes Ann Lake, Fish Lake, Ann River and its tributaries. This project will focus on watershed load reductions. Based on the strategies found in the Implementation Plan, the first priority will be to target the animal and cropland - agricultural areas on the Ann River and its tributaries. The second priority will be to target the lake shore and streambank areas in the non-agricultural areas.
Great River Energy (GRE) operates a power plant in the City of Elk River which generates electricity by incinerating municipal solid wastes. The plant is located proximate to the City of Elk River wastewater treatment plant (WWTP). This project will result in a corresponding reduction of groundwater use by GRE.
The Crow Wing Soil and Water Conservation District (SWCD) will engage citizen and nonprofit groups to enhance, improve, and protect Crow Wing County (CWC) lakes and rivers. To do this, the SWCD will partner with the University of Minnesota Extension, MN DNR, CWC, nonprofits, and lake associations to implement a mini grant program and provide grant funds to 20 community groups.
The Crow Wing Soil and Water Conservation District (SWCD) will partner with citizen groups and nonprofit groups to complete projects to reduce stormwater runoff and retain water on the land in Crow Wing County's (CWC) 125 minor watersheds. The SWCD will implement a mini grant program and provide competitive grant funds to an anticipated 12 groups. This project will also address CWC Water Plan priorities one, two, and six, which involve stormwater management and sediment control, shoreline buffers, and agriculture best management practices.
The Crow Wing Soil and Water Conservation District (SWCD) proposes to partner with citizen groups and nonprofit groups to complete projects that will reduce polluted runoff and keep water on the land in Crow Wing County's (CWC) 125 minor watersheds. To do this, the SWCD will implement a mini grant program and provide competitive grant funds to an anticipated 12 groups. Citizens groups will use their innovation and creativity to apply for project funds through the SWCD.
Once thought to have an essentially inexhaustible groundwater supply, Minnesotans are now realizing our rates of use are regionally unsustainable. Recent advanced modeling by the MN DNR and Metropolitan Council of aquifer supplies, in conjunction with predicted demand, indicate the major metropolitan area aquifers are currently subject to extraction rates that exceed recharge. Simply stated, we are mining our groundwater.
Crow Wing County, in cooperation with the municipalities within the County, plans to continue its successful well sealing program that pays 50% of the cost to seal unused/abandoned wells up to a maximum of $1000 per well. The amount of funding requested is $31,000 which is estimated to allow for the sealing of 80-100 wells. From 2012 to 2015, Crow Wing County sealed 65 wells as part of an earlier MDH well sealing grant from the Clean Water Fund. Priority will be given to wells located in or near existing wellhead protection areas.
The project will include lake monitoring on three (3) lakes found in the Rum River watershed in southeastern Crow Wing County (CWC). The project will be conducted in an effort to gain sufficient data on these data-deficient lake sites. All of the proposed monitoring sites are target sites for 2013-2014. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP).
This project will identify and prioritize opportunities to implement a multipurpose drainage management plan that will provide adequate drainage capacity, reduce peak flows and flooding and reduce erosion and sediment loading, improving water quality to the West Branch Rum River.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
This phase of the project will complete the analysis of existing and newly collected water quality data in the Red River of the North-Grand Marais Creek watershed and also verify the impairments on the currently listed reaches and determine the status of the remaining river reaches as being either impaired or currently meeting standards. Stakeholder involvement and public participation will be a primary focus throughout the project.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct watershed models for the Grand Marais Creek and Snake River Watersheds and perform an initial hydrologic calibration using Hydrologic Simulation Program FORTRAN (HSPF).
The purpose of this project is to prepare a Watershed Restoration and Protection Strategy (WRAPS) Report and Total Maximum Daily Load (TMDL) Study for public notice. This project will include addressing and incorporating Minnesota Pollution Control (MPCA) review comments in both documents. The TMDL Study has been submitted to the United States Environmental Protection Agency (USEPA) for preliminary review. USEPA comments will be addressed prior to public notice.
This project will install nearly 800 linear feet of restored lakeshore with an emphasis on bioengineering techniques, native plants and locating buffers/swales at points of concentrated overland flow into Green Lake. By targeting properties that are eroding and/or with concentrated overland flow to the lake we will reduce suspended solids discharge by 16,697 lbs/yr and phosphorus by 1.3 lbs/yr.
The goal of this project is to refine the segmentation, extend the simulation period, and recalibrate an existing Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Rum River Watershed.
Provide funding to counties to assist low-income homeowners with needed Subsurface Sewage Treatment Systems (SSTS) upgrades to protect public health and the environment.
Lake George is the premier recreational lake in Anoka County with above average water quality, a vibrant fishery, and a large regional park and beach that is among the most utilized in the county. Located in northwestern Anoka County within the Upper Rum River Watershed Management Organization (URRWMO), the Lake George Improvement District (LGID) was formed to tend to the lake's diminishing water quality and problematic invasive species.
This project is a cooperative effort between Crow Wing and Itasca County to contract with RMB Laboratories to generate 65 lake assessment/trend analysis reports. The watershed protection model is an innovative and proactive approach to water resource management which is geared towards prioritizing areas of concern, targeting implementation strategies, and measuring their effectiveness. These assessments are also useful and understandable tools for lake associations and the public.
Little Rock Creek, a cold-water trout stream in central Minnesota, is impaired due to the lack of trout and other cold water fish. The trout are absent because of high water temperatures, low dissolved oxygen and high nitrate levels, stressors caused from a lack of base flow and overuse of groundwater. This project continues a 2011 initiative to assist irrigators in the Little Rock Creek groundwater recharge area with managing the timing and amount of irrigation applied to their crops.
This project will install practices to improve water quality in Long Lake, Isanti Co. We will install at least 350 linear feet of restored lakeshore and 3,000 sq ft of native plant stormwater treatment with an emphasis on bioengineering techniques, native plants and locating buffers/swales/rain gardens at points of concentrated overland flow into the lake. By targeting properties that are eroding and/or with concentrated overland flow to the lake we will reduce suspended solids discharge by 6,300 lbs/yr and phosphorus by 0.6 lbs/yr.
This project will result in the installation of give water quality practices totaling 350 linear feet of restored lakeshore and 6,000 square feet of native plant stormwater management. By targeting properties that are eroding and/or with concentrated overland flow to the lake, pollutant discharge to the lake will be reduced.
This project will support water quality monitoring and data analysis in the Red River Basin. The monitoring will assist in providing water chemistry data needed to calculate annual pollutant loads for the Major Watershed Load Monitoring Program (MWLMP) and provide short term data sets of select parameters to other MPCA programs.
Ensuring natural resource practitioners are applying state-of-the-art approaches is the best way to achieve optimum Best Management Practice (BMP) selection, design, and placement in the landscape, thereby maximizing Clean Water Fund (CWF) benefits. To that end, it is critical to train new staff, create modeling protocols for new BMPs, refine and calibrate models, and test ever-advancing modeling applications.
This grant will fund the creation of a new Coordinator position with a primary focus on the Mille Lacs Lake subwatershed. Although not currently impaired, the Lake faces increasing development and land use pressure. Implementation of protection strategies is essential to the Lake's long-term health but current staffing does not allow sufficient time to be spent on project development and outreach to identify interested landowners.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project combines the use of automated soil moisture probes for irrigation scheduling with diverse cover crop planting to reduce or eliminate leaching of nitrogen and other nutrients on cropland with an early season harvested crop in the rotation. The more efficient use of irrigation waters provides a secondary benefit: less withdrawal from the aquifers that provide recharge for the Mt. Simon-Hinckley aquifer.
This project will collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North; and publish the data both on the USGS NWIS website and in the USGS Annual Report.
The objectives of this project are to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North. Data will be published on the USGS Nation Water Information System (NWIS) website and in the USGS Annual Report.
Agency staff and local partners will gain an improved understanding of the nautre of the chemical and physical attributes of the Red River of the North.
As part of the FY 2012 funding cycle, the Board of Water and Soil Resources granted funds for development of the Water Quality Decision Support Application (WQDSA). The WQDSA will provide land and water managers with geospatial data and online tools to prioritize, market, and implement actions on the landscape to achieve water quality objectives identified in local and state water plans and to ensure that public funding decisions are strategic and defensible.