All Projects

Showing 1 - 7 of 7 | Export projects
Recipient
Southeast Minnesota Water Resources Board-Winona State University
2012 Fiscal Year Funding Amount
$80,737
Fund Source

This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.

Recipient
University of Minnesota
2011 Fiscal Year Funding Amount
$33,414
Fund Source

This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).

Recipient
Minnesota Department of Health
2019 Fiscal Year Funding Amount
$1,100,000
2018 Fiscal Year Funding Amount
$1,100,000
2017 Fiscal Year Funding Amount
$1,100,000
2016 Fiscal Year Funding Amount
$1,100,000
2015 Fiscal Year Funding Amount
$1,150,000
2014 Fiscal Year Funding Amount
$1,150,000
2013 Fiscal Year Funding Amount
$1,020,000
2012 Fiscal Year Funding Amount
$1,020,000
2011 Fiscal Year Funding Amount
$744,717
2010 Fiscal Year Funding Amount
$250,291
Fund Source

The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.

Recipient
SE SWCD Tech Support Joint Powers Organization
2012 Fiscal Year Funding Amount
$309,800
Fund Source

Regionally, nitrate nitrogen concentrations are continuing to increase in both surface water and ground water based on monitoring data. The increasing trends are thought to be attributable to over application of manure and commercial nutrients on row-cropped fields. In order for nitrate concentrations to decrease, nutrient management is needed throughout the basin. Two nutrient management specialists will assist landowners in the eleven-county Southeast Minnesota Area with writing nutrient management plans and implementing conservation practices for manure and fertilizer use.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$86,582
Fund Source

The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.

Recipient
Southeast Minnesota Water Resources Board
2012 Fiscal Year Funding Amount
$221,790
Fund Source

The lack of sewage treatment in some small communities in Southeast Minnesota is causing surface water and groundwater pollution. Fourteen of these communities will be the target of the technical assistance provided by this project. These communities have community or individual straight pipes discharging raw sewage directly into the environment;surfacing sewage or have sewage contaminating groundwater.

Recipient
Fillmore County
2014 Fiscal Year Funding Amount
$56,717
Fund Source

The goal of this project is to investigate nitrate transport and the sources of nitrate in karst for more effective implementation of best management practices that will reduce nitrate concentrations in ground and surface water.