This project will support the monitoring of two sites on the Cannon River throughout the field seasons of 2013 and 2014 during storm events and baseflow conditions to capture 25 samples per year at each site according to the WPLMN objectives. The information gathered from these samples and site visits will be compiled for reporting purposes and for use in calculating pollutant loading using the FLUX32 model.
This project targets retrofit stormwater Best Management Practices (BMPs) on public land to assist partnering Local Government Units (LGUs) achieve water quality goals identified in local stormwater plans. The Dakota County Soil and Water Conservation District (SWCD) provides technical assistance and distributes Clean Water Funding (CWF) to leverage local funding through its time-proven Stormwater Retrofit Partnership (Partnership) cost share program.
This project is a continuation of the Dakota County Community Initiative, which has received Clean Water Funds in 2012 and 2013. It will provide cost share funding to organizations and associations who voluntarily construct medium sized water quality best management practices (BMPs) in Dakota County.
This project will use the Dakota County Soil and Water Conservation District's existing Conservation Initiative Funding program to provide technical assistance and monetary incentives for targeted, medium-sized projects such as raingardens, bioinfiltration, biofiltration, bioswales, shoreline stabilizations, and other best management practices (BMPs). Project proposals will be solicited from faith based organizations, homeowner associations, school organizations, lake associations, and others that own or manage large areas of land.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
With limited funds and limited staff time available for targeting critical service areas and implementing Best Management Practices (BMPs), Geographic Information System (GIS)-based tools that pinpoint locations where BMPs will have the highest effectiveness are increasingly important. The Blue Earth County/SWCD Watershed Implementation Targeting project will utilize LiDAR topographic data to determine areas of high importance for BMP implementation. The county is located in the Blue Earth, LeSueur, Watonwan and Middle Minnesota watersheds where there is a high density of impaired waters.
The Cannon River Watershed is a diverse watershed from the standpoint of topography, land use, and land cover, but a central issue of concern is increased sedimentation and turbidity within the river. One of the best ways to keep sediment from entering the Cannon River is to install vegetative buffers on the smaller tributaries in the upper reaches of the watershed. This project is important as it aims to help identify strategic locations where buffers are needed and to assist landowners to install buffers that will directly help reduce sedimentation within the watershed.
Once thought to have an essentially inexhaustible groundwater supply, Minnesotans are now realizing our rates of use are regionally unsustainable. Recent advanced modeling by the MN DNR and Metropolitan Council of aquifer supplies, in conjunction with predicted demand, indicate the major metropolitan area aquifers are currently subject to extraction rates that exceed recharge. Simply stated, we are mining our groundwater.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
The Conservation Dashboard will provide the Carlton Soil and Water Conservation District, its water plan, and local landowners a system to target, prioritize, and measure resource needs and effective conservation implementation within the subwatersheds of Carlton County. The Dashboard will identify where data gaps exist, translate the data in a way that partners and landowners easily understand, and insert Best Management Practice recommendations onto the county webmapping tool, used by citizens.
Carlton County Soil and Water Conservation District (SWCD) and local volunteers will lead an effort to collect total phosphorus, chlorophyll-A, hardness, chloride and secchi disc transparency data for the Minnesota Pollution Control Agency (MPCA) Surface Water Assessment Grant project on the following 10 lakes: Twentynine, Bob, Bear, Little Hanging Horn, Hanging Horn, Moose, Echo, Coffee, Kettle and Merwin.
This project will address impairments in the St. Croix, Kettle and Snake River Watersheds by reducing sediment and phosphorus delivery by encouraging private forest landowners within the St. Croix River Watershed in Pine County to re-establish riparian forest buffers, maintain existing riparian buffers and plant de-forested areas. It will develop a forest stewardship program and write forest stewardship plans in watersheds with the highest risk of impacts on water quality as listed by the Minnesota Forest Resources Council. This project will implement measures to achieve the St.
This project will improve water quality, reducing phosphorus annually by 1,842 in the St. Croix, Kettle and Snake River Watersheds in Pine County by establishing cover crops to reduce erosion and phosphorus/fertilizer applications, increase soil fertility, permeability, and microbe activity. A no-till drill will be purchased for use by agricultural producers for installing cover crops as a means of decreasing soil erosion, reducing phosphorus and fertilizer applications and increasing soil health.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will develop and organize a first- stage civic infrastructure pilot in Kanabec County, within the membership of the PICKM (Pine, Isanti, Chisago, Kanabec, and Mille-Lacs) Alliance, and with other organizations in the St. Croix Basin. The work will be grounded in the need for sustainable citizen engagement in water quality management. Civic leaders participating in this project will build their own skills for organizing people and working in partnership with Kanabec County SWCD staff and the St. Croix Basin Team to achieve water quality goals.
This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will provide baseline data through water monitoring, recording and analyzing the results of six unassessed rivers/tributaries, three unassessed lakes and five storm water outlets in the city of Mora which drain to the Snake River; promote and implement approved BMP’s.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
Le Sueur County has completed water quality assessments of its lakes, which are on the impaired waters list for excess nutrients. The Francis Rays Sakatah Tetonka Lakes Septic Inventory project will complete up to 400 shoreland septic compliance inspections, create an ArcMap GIS layer, create community assessment reports on priority areas and provide education and outreach to the public through informational meetings and website development. The project will also jump-start upgrading non-compliant septic systems.
The German-Jefferson Subordinate Service District Board (board) completed a voluntary septic inventory through the Clean Water Fund in 2013. 344 out of 754 parcels participated in the inventory. Approximately 50% of the septic systems were found to be non-compliant with MN Rules Chapter 7080. That project included an assessment of septic systems on non-participating properties that identified eleven priority areas in populated communities with small lots. Three community feasibility studies out of the eleven priority areas were conducted.
Construct, calibrate, and validate three Hydrologic Simulation Program FORTRAN (HSPF) watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs).
Starting in 2016 the Minnesota Pollution Control Agency (MPCA) will be collecting monitoring data on many lakes and streams in the Kettle River and Upper Saint Croix Watersheds. While this information will be useful to assess the overall health of the watershed, it will miss locations in the watershed that can provide critical information to local implementers, local governments, and citizens.
This project is to initiate a basic outreach and education plan for the Kettle River Watershed as a first step in a longer-term strategy to engage citizens in watershed problem solving and actions to restore or protect waters.
Carlton County has developed the following vision for civic engagement in the Kettle River Watershed: To educate and inspire Kettle River Watershed residents to become more involved and engaged in Water Quality protection and restoration efforts.
The goal of the Lake Volney Targeted Restoration project is to improve the water quality draining to Lake Volney, which is impaired for excess nutrients. The project contains eight priority areas and will install a variety of Best Management Practices, including stormwater basins, ag retention, wetland enhancement, and more.
The MPCA has selected the Soil and Water Assessment Tool (SWAT) watershed model to simulate watershed hydrology and water quality to assess various restoration scenarios in the Little Cannon River watershed. The SWAT model is an important tool in developing an understanding of existing conditions and simulating conditions under various management scenarios to inform the development of implementation strategies and plans to restore and protect streams and lakes.
LEQA is a Minnesota Department of Agriculture (MDA) program to help livestock producers address, using a non-regulatory approach, the unique water quality issues on their farms. The MDA has contracted with Ag Resource Strategies, LLC, to recruit farmers to enroll in the LEQA program. The company trains technicians to assess different areas of each farms, such as the farmstead, livestock facilities, fields and wooded areas. The technicians then develop an environmental assessment and identify financial assistance for these projects.
Ensuring natural resource practitioners are applying state-of-the-art approaches is the best way to achieve optimum Best Management Practice (BMP) selection, design, and placement in the landscape, thereby maximizing Clean Water Fund (CWF) benefits. To that end, it is critical to train new staff, create modeling protocols for new BMPs, refine and calibrate models, and test ever-advancing modeling applications.
The Cannon River Watershed includes approximately 941,000 acres of primarily agricultural landscape. Because of its large size, four subwatershed lobes are often referenced: Straight River Watershed, Upper Cannon River Watershed, Middle Cannon River Watershed, and the Lower Cannon River Watershed. Rice County is proposing utilizing LiDAR topographic data to determine areas of highest importance for Best Management Practice (BMP) Implementation for sediment within the Middle and Lower Cannon subwatersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
Through this project, the North Cannon River Watershed Management Organization (NCRWMO) works cooperatively with the Dakota Soil and Water Conservation District (DSWCD) and landowners to establish best management practices (BMPs) that reduce runoff and decrease the movement of sediment, nutrients, and pollutants into the Cannon River and its tributaries including, Trout Brook, Chub Creek, and Pine Creek.
The Minnesota Department of Natural Resources will coordinate the collection of high-resolution elevation data for northeastern portion of Minnesota using Light Detection and Ranging (LIDAR) systems. The geographic area of the work includes Minnesota counties of Carlton, Cook, Lake, and St. Louis Counties and that portion of Koochiching County that comprises Voyageurs National Park.