The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
This project will develop, implement, and evaluate the impacts of co-developed civic engagement outcomes for the St. Louis River, Big Fork River, and Littlefork River watersheds.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the St Louis River Watershed.
The St. Louis River watershed is one of the largest watersheds in northern Minnesota and the largest single contributing watershed to Lake Superior. Surface waters are abundant with 353 lakes and 97 streams segments. Large areas of forest and wetlands help to sustain areas of exceptional water quality. However, land use changes have degraded many lakes, rivers, and streams. 21 stream reaches have aquatic life impairments, as identified by high turbidity (1 reach), poor quality aquatic macro-invertebrate community (16 reaches), and/or poor quality fish community (12 reaches).
This project will provide complementary (same year) physical and chemical data sets for three MPCA prioritized lakes in NE Minnesota to incorporate into the overall State database for MPCA assessment purposes as well as research purposes.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.