The Nobles Soil and Water Conservation District (SWCD) and Nobles County Environmental Services will complete Level III feedlot inventories with manure management plan reviews through portions of the Rock River Watershed located within Nobles County. There are 133 registered feedlots in the Rock River Watershed portion of Nobles County including 62 open lots and 7 within shoreland. Rock County has completed level III feedlot inventories through the Rock River Watershed within Rock County borders.
On behalf of the Metropolitan Council, Environmental Financial Group Inc. generated a matrix of water conservation programs with detailed information about the costs and benefits of the programs. Tools were also developed to allow users to calculate potential water savings, estimate program implementation costs, and test the effects of various water conservation programs and rate structures.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
Currently, there are approximately 5,050 feedlots with fewer than 300 animal units that need to come into compliance with State feedlot rules. Clean Water Feedlot Water Quality Management Grant funds are being used to provide financial assistance to landowners with feedlot operations less than 300 animal units in size and located in a riparian area or impaired watershed.
Once known for its clean water, fertile soil, and healthy habitat, in more recent times the Heron Lake Watershed in southwestern Minnesota has been heavily impacted by pollution from intensive agriculture, feedlots, non-compliant septic systems, and urban stormwater runoff. The Heron Lake Watershed District is using this appropriation for public outreach and installation and monitoring of water quality improvement projects aimed at reducing sediment and nutrient loading for the benefit of public health, recreation, and wildlife habitat.
The goal of this project is to construct, calibrate, and validate a watershed model using HSPF. RESPEC will produce a HSPF model that can readily be used to provide information to support conventional parameter TMDLs.
Jackson SWCD will collect water chemistry data at three sites; West Fork Little Sioux River, Little Sioux River, and the Loon Lake Outlet. A full suite of lab and field parameters will be collected May - September in 2011 and 2012 at all three sites.
In September of 2009 and January of 2010, the Federal Government allocated $300,000 worth of Federal Funds to the Kanaranzi-Little Rock Watershed District through the American Recovery and Reinvestment Act. The Funds were to be utilized as cost-share assistance for conservation practices such as terraces, waterways and water and sediment control basins. All practices are designed to reduce erosion and also help mitigate flood damages. The program received more requests for funds than what was available.
In September of 2009 and January of 2010, the Federal Government allocated $300,000 worth of Federal Funds to the Kanaranzi-Little Rock Watershed District through the American Recovery and Reinvestment Act. The Funds were to be utilized as cost-share assistance for conservation practices such as terraces, waterways and water and sediment control basins. All practices are designed to reduce erosion and also help mitigate flood damages.
The Lake Ocheda Shoreline Improvement Project will restore and provide long term protection of 1,600 feet of lake shoreline resulting in improved drinking water supplies, improved water quality for fishery and upland habitat and historical preservation. A large portion of this shoreline currently has a 10 to 20 foot vertical wall of shoreline that has been sloughing for the past 50 to 100 years.
The purpose of this project is to complete Intensive Hydraulic Conditioning on the remaining 60% of the watershed to be able to utilize the Prioritize, Target, and Measure application (PTMApp). The basin has 1.1 million acres of drainage with approximately 630,000 acres remaining to be hydro conditioned. With the advancement in targeting pollution sources within the watershed and state, the partners intend to be able to more accurately target conservation practices with the hydraulic conditioning completed.
The goal of this project is to develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the 29 stream impairments listed in the Missouri River Basin. The project will produce completed models and pollutant source assessments for each impairment parameter, and a draft TMDL report that summarizes results of these analyses and TMDL allocations for each stream.
This project will support the sampling of six stream sites: two reaches of the Little Rock River, two Locations on the Kanaranzi Creek, one location on the East Branch of the Kanaranzi Creek as well as one location on the Ocheyedan River.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.
Over the last 5 years, Nobles County has identified and targeted waters that have impairments for excess sediment. This project continues this effort by implementing projects that have been identified by the Nobles Soil and Water Conservation District as having the highest benefit for sediment reduction to these impaired waters in the county. The inventory and identification of projects as well as their ranking was based on sediment load reductions. Utilizing a ranking method developed by the Nobles County Local Work Group, sixty-nine projects have been ranked and eighteen selected.
Lake Okabena does not meet state water quality standards due to high phosphorus levels. The Total Daily Maximum Load Study identified a 70% reduction in phosphorus from the watershed is needed to meet water quality standards. The City of Worthington owns the recently closed Prairie View Golf Course. Okabena Creek flows through the golf course and some small ponds. This project will modify these three ponds to increase storage and removal efficiency, and add an iron-enhanced filter bench to enhance soluble phosphorus removal.
This program is a part of a comprehensive clean water strategy to prevent sediment and nutrients from entering our lakes, rivers, and streams; enhance fish and wildlife habitat; protect groundwater and wetlands. Specifically the Riparian Buffer Easement Program targets creating buffers on riparian lands adjacent to public waters, except wetlands. Through the Reinvest in Minnesota Program (RIM) and in partnership with Soil and Water Conservation Districts and private landowners, permanent conservation easements are purchased and buffers established.
Provide information meeting about incentive to encourage agriculture producers to reduce nitrate. Establish incentive for agriculture producers to use best management practices to reduce nitrate in drinking water system.
The Nobles Soil and Water Conservation District (SWCD) will test waters needing data for impairment listing in the Rock River and Little Sioux watersheds. Two reaches of the Little Rock River and the Ocheyedan River need stream water assessments. Iowa Lake needs sampling completed for impairment identification. The project will obtain adequate stream and lake data to either list the tested stream reaches and lake on the 303(d) list as impaired, or provide evidence that the stream reaches and lake is not impaired.
This project will collect water quality data at eight stream sites in three of the MPCA targeted watersheds. The sites are located on Medary Creek, Flandreau Creek, Pipestone Creek (2), Split Rock Creek, Rock River, Poplar Creek and Chanarambie Creek. This project will also promote a citizens monitoring program and encourage individuals to participate in a monitoring program.
This comprehensive water sampling program will assess the water quality of six sites: two main points on the Rock River, two main tributaries to the Rock River, and two points where streams leave the state (Mud and Beaver Creek) for a period of two years.
This project is a comprehensive two year water sampling program that will effectively assess the water quality of three main tributaries that contribute to the Rock River. These tributaries are the Champepadan Creek, Mound Creek and an unnamed Creek. The sampling frequency will be two times per month in the year 2010 and three times per month in the year 2011. Sampling will begin in April, when the channels are mostly free of ice and continue until October each year.
The Southwest Prairie Technical Service Area 5 (SWPTSA), located in the southwest corner of Minnesota, encompasses 11 Soil and Water Conservation Districts (SWCDs): Cottonwood, Jackson, Lac Qui Parle, Lincoln, Lyon, Murray, Nobles, Pipestone, Redwood, Rock, and Yellow Medicine. This project will protect natural resources within the three major river basins of Minnesota, Missouri and Des Moines Rivers. The SWPTSA will assist member SWCDs in locating and identifying priority subwatersheds that have soil erosion and water quality issues using terrain analysis.
This monitoring work expands on previously established routine water quality and flow sampling to include extensive fish and aquatic invertebrate surveys. Subsequent steps include assessment of the monitoring data to determine impairments, identification of stressors that are causing impairments, development of Total Maximum Daily Load (TMDL) studies using identification of pollutant sources using computer modeling and other techniques, civic engagement, and public education as approaches in progress towards water quality goals.
Locating the sources of sediment, phosphorus, and bacteria is integral to reducing the effect they have on a water body. The completion of the West Fork Des Moines River (WFDMR) Targeting and Prioritizing Endeavor will result in a set of data that is the most cost-effective for the implementation of Best Management Practices (BMPs) for all identified priority resources. The results will be expressed as the maximum reduction of a water quality contaminant (e.g. sediment, phosphorus, bacteria) at a priority resource (e.g. an impaired stream) for a given level of investment.