Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in Ramsey county and Hennepin county. This project will provide services and oversight of the installation for up to 16 well sites.
Widseth Smith Nolting (WSN) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
Widseth Smith Nolting (WSN) will evaluate and recommend to Minnesota Pollution Control Agency (MPCA) groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in northcentral and northeastern Minnesota. This project will provide services and oversight of the installation for up to 31 well sites.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in Minnesota. This project will provide services for up to 25 well sites.
The goal of this project is to develop statewide biological criteria for managing the state’s water resources, in keeping with the federal Clean Water Act. The MPCA is using the Biological Condition Gradient (BCG) for this development. The BCG is a conceptual model that describes changes in aquatic ecosystems on a gradient of increasing anthropogenic stress.
The purpose of this project is to provide stream and large river macro invertebrate sample processing and identification for the Minnesota Pollution Control agency (MPCA) Biological Monitoring Unit.
The final product will consist of; data submitted electronically to the MPCA, project reference specification, return of all identified specimens, and an external and internal QA/QC report.
This study will test groundwater and drain tile waters at concentrated animal feedlot opperations (CAFOs) to evaluate the presence of intibiotics and hormones. Samples will be collected from monitoring wells, tile drain sumps, and tile line discharges.
Water samples will be sent to Axys Analytical Services as they are colleced from each monitoring site. A total of 18 samples will be generated in the field by pumping ultrapure water through the sampling system.
The goals of the program are to evaluate the effectiveness of agricultural conservation practices, identify underlying processes that affect water quality, and develop technologies to target critical areas of the landscape. Funded projects provide current and accurate scientific data on the environmental impacts of agricultural practices and help to develop or revise agricultural practices that reduce environmental impacts while maintaining farm profitability.
On behalf of the Metropolitan Council, Environmental Financial Group Inc. generated a matrix of water conservation programs with detailed information about the costs and benefits of the programs. Tools were also developed to allow users to calculate potential water savings, estimate program implementation costs, and test the effects of various water conservation programs and rate structures.
This project will provide a shared working definition and principles for civic engagement, that enable state agencies to more effectively, strategically and collaboratively manage the social dimension of Minnesota’s water resource management efforts . The agencies included in the project are BWSR, MDNR, MDA, MDH and MPCA. The consultant and project participants will develop recommendations that will better enable policy and decision makers, CWF teams, the Clean Water Council and others to make informed decisions surrounding civic engagement efforts.
This project will lead to environmental improvements and preservation in the state’s watersheds as it will provide a framework that will streamline the development of Watershed Reports across the state at a common scale and schedule. Additionally, MPCA staff, local partners and citizen volunteers will be able to integrate the results of these studies into watershed strategies and implementation plans.
This training will be for State employees who have purchased this new type of discharge measuring equipment. This training is needed to ensure that accurate and complete discharge measurements are made which is supplied to Minnesota Department of Natural Resources (DNR), Consulting firms, Local units of government, federal government and Minnesota Pollution Control Agency (MPCA) modelers.
The contractor will add more functionality to HSPEXP+ Hydrological Simulation Program FORTRAN (HSPF) tool and conduct 2016 HSPF Modeling Contractors Meeting
The goal of this project is to enhance the current version of the Enhanced Expert System for Calibration of HSPF (HSPEXP+) so that it can more easily and quickly be used for hydrology calibration, water quality calibration, generate reports and graphs.
The primary goal of this project is to enhance the current version of the Expert System for Calibration of HSPF (HSPEXP+) so that it can better support hydrology calibration, water quality calibration, report and graph generation. A secondary goal of this project is to modify the Hydrological Simulation Program FORTRAN (HSPF) program so that precipitation additions to streams and lakes contain dissolved oxygen.
Working with Metropolitan Council Environmental Services, Camp Dresser & McKee (CDM) evaluated the feasibility of using stormwater runoff for irrigation and other purposes that traditionally rely on potable water. Effective implementation of stormwater reuse practices can lower demands on drinking water supplies and reduce impacts from aquifer decline, while simultaneously reducing mass loading of pollutants to surface waters.
The lab will analyze stable isotopes oxygen-18 and deuterium in water samples collected in streams, lakes, wetlands, groundwater, and point sources. This data can identify primary flow sources under varying flow conditions (low to very high flows). Identifying sources can help identify pollutant sources or locate areas that are in need of protection. For example, you may want to protect an area that contributes cold groundwater to a coldwater fishery. Or it could link a water chemistry impairment to a specific source.
This project will complete a guidance document for the construction of Hydrologic Simulation Program FORTRAN (HSPF) watershed models which are intended to support MPCA Watershed programmatic activities. It will also customize and populate a national HSPF parameter database with values from Minnesota HSPF model applications. This enhanced database will expedite the future construction of HSPF models as well as increase the consistency among HSPF model applications in Minnesota.
Development of Target NPS loading rates along with a pollutant source allocation tool for assessing and quantifying source allocations for impaired stream reaches for use in the TMDL development.
This project will address the numerous recommendations included in the original Guidance Document to provide an updated and improved Guidance Document. This improved guidance will help to ensure consistency and validity of future HSPF model applications within the State as part of the One Water Program.
This project will finalize the guidance document to ensture consistency and validity of future Hydrological Simulation Program FORTRAN (HSPF) model applications within the State of MN. This improved guidance will help to ensure consistency and validity of future HSPF model applications within the State as part of the One Water Program.
The goal of this project is to develop a watershed-scale decision support tool, Scenario Application Manager (SAM), to facilitate prioritization and placement of best management practices (BMPs) needed to achieve the necessary reductions identified by various watershed management programs in Minnesota. SAM consists of a Geographic Information System (GIS) for site selection, and Hydrological Simulation Program – Fortran (HSPF) model application to simulate the transport of pollutants.
The goal of this work is to enhance the Scenario Analysis Manager (SAM) tool. These enhancements will enable point source and stressor identification staff within the state to quickly access data, facilitate their research, and develop scenarios. This work will focus on the development of SAM by creating a user friendly interface, expanding the BMP database, and improving the BMP simulation methodology including optimization functionality. Additionally, this work includes development of a HSPF validation tool, testing and QAQC, and provides documentation and training to expected users.
The goal of this project is to develop the guidance needed for water quality parameter evaluation and calibration for Hydrological Simulation Program – FORTRAN (HSPF) applications that utilize the general water quality constituent routines on the land surface to generate loadings of nutrients and organic material for input to water bodies to support dissolved oxygen (DO), nutrient, and algal simulation.
This project will fix problems at the statewide/system level so that all Watershed Restoration and Protection Strategy (WRAPS) reports and other projects will benefit by saving money and time as they will no longer have to do data reconciliation work.
The Minimal Impact Design Standards (MIDS) project represents the next generation of stormwater management in Minnesota. MIDS offers guidelines, recommendations and tools that help low impact development practices be implemented more uniformly across Minnesota's landscape and provides guidance to effectively implement the concepts and practices of low impact development. Products include performance goals for new development, redevelopment and linear projects, a graphic user interface calculator and flexible treatment options for sites design.
This project is to update stormwater harvest/reuse best management practices (BMPs) in the Minimal Impact Design Standards (MIDS) calculator. The update will also allow the calculator to utilize Excel files from previous of the tool.
The Minimal Impact Design Standards (MIDS) project represents the next generation of stormwater management in Minnesota. The consultant was hired to conduct research and design specifications for permeable pavement and turf.
The overall goal of this project is to further develop performance standards, design standards, or other tools to enable the implementation of low-impact development and other stormwater management techniques.
This project will provide data and information that can readily be incorporated into an updated version of the Minnesota Stormwater Manual (“Manual”). The consultant will develop and submit state-of-the-art engineering and science information in a condensed summary, including color graphics and color photos suitable for a diverse audience. The Manual and associated materials, such as CAD drawings, case studies, color photos, and spreadsheets will: (a) comply with the State Accessibility Standard ; (b) provide clear and simple navigation, and (c) enable easy data downloads.
Using data supplied by Minnesota Pollution Control Agency (MPCA), this project will model the relationship between sulfate and sulfide in wild rice habitats.
The goal of this project is to support the Stressor Identification portion of the Minnesota Watershed approach by designing a template used to develop Stressor Identification Reports for watersheds across the State of Minnesota.
The goal of this project is the development of a model of wild rice population dynamics, using RAMAS software, which mimics natural variability of population levels and calculates the probability of population extinction.
The contractor will provide 3 Scenario Analysis Manager (SAM) training sessions in the fall of 2016 for use with Hydrological Simulation Program FORTRAN (HSPF) model applications.
The contractor will collect and process the necessary files needed to develop a Processing Application Tool for HSPF (PATH) and Scenario Application Manager (SAM) project for 30 HUC 8 watersheds in Minnesota. SAM provides a graphical interface to the Hydrological Simulation Program FORTRAN (HSPF) model applications and expands the state’s investment in HSPF to a broader audience in support of the development of Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports.