This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
This Total Maximum Daily Load (TMDL) project will develop a TMDL Report and Implementation Plan defining the sources contributing to the impairments and outlining the steps necessary to bring Bluff Creek back to meeting water quality standards.
On behalf of the Metropolitan Council, Environmental Financial Group Inc. generated a matrix of water conservation programs with detailed information about the costs and benefits of the programs. Tools were also developed to allow users to calculate potential water savings, estimate program implementation costs, and test the effects of various water conservation programs and rate structures.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
The goal of this project is to develop a phosphorus TMDL for the six impaired lakes in the southwest portion of the Rice Creek Watershed District; Island Lake, Little Lake Johanna, Long Lake, East Moore Lake, Pike Lake and Lake Valentine.
On behalf of the Metropolitan Council, Barr Engineering Company developed maps and supporting information to characterize the relationship between surface waters and groundwater, identifying surface waters most likely to be impacted by groundwater withdrawals in the region. This project also provided guidance on effective resource monitoring strategies and costs for each type of surface water feature.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to develop draft Total Maximum Daily Load (TMDL) computations for six impaired lakes and two impaired streams, and to provide TMDL development documentation for selected draft TMDL report sections.
This project will complete an EPA- and MPCA-approved TMDL Study and an MPCA-approved TMDL Implementation Plan that provide quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, that are understood and adoptable by local units of government and other stakeholders.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project will support the review of all public comments submitted for the North Fork Crow River TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
The goal of this project is to add dual endpoints to the turbidity section of the North Fork Crow TMDL so that it addresses the proposed TSS standards.
The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.
The Metropolitan Council, in conjunction with HDR Engineering, Inc. consultants, will evaluate a variety of approaches to develop sustainable water supplies across the metro area. Subregional study areas are being selected where multiple communities face potential problems with the long-term sustainability of current water supplies, and where community stakeholders have expressed interest in learning more about sustainable water supply options.
As the Metropolitan Council updated the Twin Cities Metropolitan Area Master Water Supply Plan, stakeholders asked the Council to consider the sustainable limits of the region’s water sources. The Council’s most important analytical tool is a regional groundwater flow model (Metro Model 3), which can be used to quantify the long-term regional impacts caused by hundreds of independent groundwater appropriations.
This project will complete the final Implementation Plan, semi-annual and final reports and hold project meetings. The Implementation Plan will identify target areas and priorities for implementation strategies to improve water quality for Bluff Creek. This project will build the groundwork so Bluff Creek will meet water quality standards for aquatic life in the future.
This project will support the review of all public comments submitted for the Buffalo Creek TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
This project will develop Total Maximum Daily Load (TMDL) allocations and complete a final draft TMDL report for the five lake impairments listed for the South Fork Crow River Watershed.
This project will complete a chloride management plan which will lay out a strategy for addressing chloride impacts to our surface waters for the 7-county metropolitan area. This chloride management plan will satisfy EPA requirements for impaired waters, address waters not yet listed, and develop a strategy to protect waters that are currently meeting the water quality standards.
This project will provide the MPCA and all local partners in the Twin Cities Metropolitan Area (TCMA) the information and tools necessary to improve and/or maintain water quality with respect to chloride for the 7-county metropolitan area during the winter maintenace period.
State law charges the Metropolitan Council (Council) with developing and maintaining a base of technical information needed for sound water supply decisions (Minnesota Statutes 473.1565). The Council’s primary tool to provide this information is the Metro Model 2, a regional groundwater model capable of predicting the impacts of planned water demand on aquifers and connected lakes and streams. The Metro Model 2 is a modern and comprehensive groundwater model of the Twin Cities area, but it is currently out-of-date.
Regional recharge modeling with the Twin Cities daily soil water balance (SWB) model has been a fundamental part of the Metropolitan Council’s groundwater flow modeling effort and supports the Metropolitan Area Master Water Supply Plan. The SWB model is used to evaluate the impact of planned and potential land use and climate on recharge in the eleven-county metropolitan area, and supports the ongoing update of the regional groundwater flow model.
This project will develop a watershed restoration plan that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed. It will also an important framework for civic and citizen engagement and communication, which will contribute to long-term public participation in surface water protection and restoration activities throughout the watershed.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will support the monitoring of reaches where there are data gaps, incorporate new data and relevant data, continue identification of pollutant sources, complete load duration curves, coordinate and encourage participation in stakeholder meetings. The information gathered during Phase IIB will be utilized towards the development of a Draft Restoration (TMDL) and Protection Plan (Plan).
The Metropolitan Council, in conjunction with CDM Smith consultants, undertook a project to collect and disseminate data regarding water costs and conservation programs in the seven-county metropolitan area, including:
• Evaluating all water rate structures of the communities in the seven-county metro area. The information on rates by community is correlated with community per capita values, peaking ratios, and other water use characteristics.
• Evaluating all water conservation programs in the communities in the seven-county metro area.