All Projects

Showing 1 - 27 of 27 | Export projects
Recipient
Minnesota State University-Mankato
2010 Fiscal Year Funding Amount
$260,000
Fund Source

MSU-Mankato Water Resources Center in the Mankato area will provide conventional pollutant monitoring at the following sites: Beauford Ditch, Big Cobb River, Blue Earth River, Le Sueur River (3), Little Cobb River, Minnesota River (2), Watonwan River.

Recipient
Water Resources Center, Minnesota State University- Mankato
2013 Fiscal Year Funding Amount
$80,546
Fund Source

The goal of this project is monitor, record, and submit the dataset necessary for assessment of aquatic recreation use with the Watonwan Watershed.

Recipient
Faribault County SWCD
2017 Fiscal Year Funding Amount
$94,500
Fund Source

The goal is to facilitate strategic networking, learning, and implementation in targeted groups to assess, build, and leverage community capacity (i.e. community resources and values) to increase best management practice (BMP) adoption to restore and protect water quality in the Blue Earth River watershed

Recipient
University of Minnesota-Twin Cities
2012 Fiscal Year Funding Amount
$141,439
Fund Source

This project will develop an understanding for how sediment sources change over timescales of individual storm events as well as over the past two centuries. The results will be used by the larger Collaborative for Sediment Source Reduction (CISSR)-Blue Earth research group to establish a sediment budget for the Greater Blue Earth River Basin and understand the effectiveness of various potential mitigation strategies. In addition, these results can be used by MPCA and others to calibrate watershed sediment models.

Recipient
Minnesota River Board
2012 Fiscal Year Funding Amount
$91,691
Fund Source

This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.

Recipient
RESPEC
2013 Fiscal Year Funding Amount
$70,000
Fund Source

This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).

Recipient
Tetra Tech
2015 Fiscal Year Funding Amount
$125,000
Fund Source

The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.

Recipient
Martin County
2015 Fiscal Year Funding Amount
$97,000
Fund Source

The goal of this project is to create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the East Fork Des Moines River watershed.

Recipient
Martin County SWCD
2017 Fiscal Year Funding Amount
$20,474
Fund Source

This project will gather long term watershed data necessary for assessment, stressor identification work, and Watershed Restoration and Protection Strategy (WRAPS) development work for Elm Creek and the Blue Earth Watershed.

Recipient
Greater Blue Earth River Basin Alliance (GBERBA)
2015 Fiscal Year Funding Amount
$147,200
Fund Source

The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.

Recipient
RESPEC
2011 Fiscal Year Funding Amount
$214,963
Fund Source

This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.

Recipient
Tetra Tech
2017 Fiscal Year Funding Amount
$3,969
Fund Source

This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.

Recipient
Tetra Tech
2015 Fiscal Year Funding Amount
$100,000
Fund Source

The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.

Recipient
Tetra Tech
2015 Fiscal Year Funding Amount
$99,998
Fund Source

The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.

Recipient
Martin Soil and Water Conservation District
2014 Fiscal Year Funding Amount
$25,698
Fund Source

Martin SWCD is proposing to monitor three lakes sites and three stream sites in the East Fork Des Moines River watershed. The lake sites will be monitored by kayak and the stream sites will be monitored from the shore. Sites will be analyzed for field conditions and water chemistry.

Recipient
Martin County SWCD
2017 Fiscal Year Funding Amount
$63,458
Fund Source

Martin Soil and Water Conservation District (SWCD) is proposing to monitor six lakes sites and two stream sites in the Blue Earth River watershed. The lake sites will be monitored by kayak and the stream sites will be monitored from the shore. Sites will be analyzed for field conditions and water chemistry. Martin SWCD will subcontract with Faribault SWCD to monitor fourteen stream sites and with Blue Earth SWCD to monitor one lake site and three stream sites.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$68,033

This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$68,033
Fund Source

This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.

Recipient
Tetra Tech Inc
2018 Fiscal Year Funding Amount
$74,986
Fund Source

This project addresses twelve lakes that have aquatic recreation impairments as identified by eutrophication indicators and 53 impairments on 45 stream reaches in the Minnesota River Mankato and Watonwan River watersheds. The project will develop Total Maximum Daily Loads (TMDLs) addressing impaired lakes and streams in the Minnesota River–Mankato and Watonwan River watersheds. A TMDL establishes the maximum amount of a pollutant allowed in a waterbody and serves as the starting point or planning tool for restoring water quality.

Recipient
Minnesota Pollution Control Agency
2013 Fiscal Year Funding Amount
$5,265,335
Fund Source

This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.

Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.

Recipient
Minnesota Pollution Control Agency
2014 Fiscal Year Funding Amount
$1,000,000
2015 Fiscal Year Funding Amount
$1,000,000
Fund Source

The goal of this project is to analyze and document database architecture, platform, table structures, systems and data fields at six Minnesota agencies (Board of Soil and Water Resources, Department of Natural Resources, MN Department of Agriculture, MN Department of Health, Metropolitan Council, and MN Pollution Control Agency) for 30+ databases related to water.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$109,928
Fund Source

The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.

Recipient
Minnesota State University - Mankato Water Resource Center
2014 Fiscal Year Funding Amount
$241,130
Fund Source
Develop a network of informed citizens, business people, community leaders and others capable of acting collectively to get work done in a sustained, strategic and meaningful way through a sense of shared ownership in the water resource management process.
Recipient
Greater Blue Earth River Basin Alliance (GBERBA)
2014 Fiscal Year Funding Amount
$58,638
Fund Source
In conjunction with the Watonwan Major Watershed Project engagement process, create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the Watonwan River watershed.
Recipient
Heron Lake Watershed District
2015 Fiscal Year Funding Amount
$175,000
Fund Source

This monitoring work expands on previously established routine water quality and flow sampling to include extensive fish and aquatic invertebrate surveys. Subsequent steps include assessment of the monitoring data to determine impairments, identification of stressors that are causing impairments, development of Total Maximum Daily Load (TMDL) studies using identification of pollutant sources using computer modeling and other techniques, civic engagement, and public education as approaches in progress towards water quality goals.

Recipient
Heron Lake Watershed District
2014 Fiscal Year Funding Amount
$31,643
Fund Source
The goal of this project is to establish a framework that the local government can use to guide their involvement as the WFDMR Watershed Project progresses over the next four years. This will enhance the success of the overarching goal of providing a framework for which the local government and watershed organizations can engage the public in a manner that will lead to water quality improvement. This will result in strategies to protect or restore the waters in this watershed.
Recipient
Heron Lake Watershed District
2015 Fiscal Year Funding Amount
$21,955
Fund Source

Locating the sources of sediment, phosphorus, and bacteria is integral to reducing the effect they have on a water body. The completion of the West Fork Des Moines River (WFDMR) Targeting and Prioritizing Endeavor will result in a set of data that is the most cost-effective for the implementation of Best Management Practices (BMPs) for all identified priority resources. The results will be expressed as the maximum reduction of a water quality contaminant (e.g. sediment, phosphorus, bacteria) at a priority resource (e.g. an impaired stream) for a given level of investment.