This project goal is to conduct water chemistry monitoring at seventeen stream locations, to record and submit all data collected through this process, and to provide the information necessary for the calculation of water quality pollutant loads using the FLUX32 program.
The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River Grand Rapids Watershed. Five lakes will be sampled, including Savanna, Shumway, Loon, Hay, and Washburn. Through this effort we will obtain information that will be useful in assessing the health of this watershed. This will be valuable in planning for future restoration and protection efforts that will ensure good water and environmental quality for Aitkin County.
Widseth Smith Nolting (WSN) will evaluate and recommend to Minnesota Pollution Control Agency (MPCA) groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration.
The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
The primary goal of this project is to analyze of dated sediment cores to reconstruct changes in the lake condition over the last 150 years. This will be done using multiple lines of evidence including biogeochemistry, sediment accumulation, and diatom and algal remains as biological indicators.
The goals of this project are to develop and implement a stakeholder and public engagement program, update the Hydrological Simulation Program FORTRAN (HSPF) models for the Big Fork and Little Fork River Watersheds, develop Total Maximum Daily Load (TMDL) studies for impaired waterbodies, remove naturally impaired streams from the impairment list, develop a Watershed Restoration and Protection Strategy (WRAPS) report, and to conduct civic engagement activates necessary to ensure project success.
The purpose of this project is to provide stream and large river macro invertebrate sample processing and identification for the Minnesota Pollution Control agency (MPCA) Biological Monitoring Unit.
The final product will consist of; data submitted electronically to the MPCA, project reference specification, return of all identified specimens, and an external and internal QA/QC report.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The goal of this project is to apply the Hydrological Simulation Program FORTRAN (HSPF) model to evaluate scenarios to support potential management actions and implementation in the watershed, construct Total Maximum Daily Load (TMDL) studies, and to develop a conceptual site model of the lakes for understanding phosphorus release.
The data collected in this workplan is the foundation for an accurate TMDL allocation and accurate implementation strategy design. Current and historic phosphorus inputs will be calculated and evaluated as to source. Nutrient and algal history and trends in sedimentation will be reconstructed to identify ecological changes that have occurred in the lakes both recently and historically.
Carlton County Soil and Water Conservation District (SWCD), Carlton County Planning and Zoning, and local volunteers will lead an effort to collect Total Phosphorus, Chlorophyll-A, and secchi disc transparency data for the MPCA Surface Water Assessment Grant (SWAG) project on following six lakes: Eagle Lake, Upper (North) Island Lake, Lower (South) Island Lake, Tamarack Lake, Cole Lake, and Cross Lake.
The goal of the Chippewa River Watershed Protection project is to protect unimpaired areas of the watershed. This will be accomplished through education and outreach with landowners and through implementation of best management practices.
This study will test groundwater and drain tile waters at concentrated animal feedlot opperations (CAFOs) to evaluate the presence of intibiotics and hormones. Samples will be collected from monitoring wells, tile drain sumps, and tile line discharges.
Water samples will be sent to Axys Analytical Services as they are colleced from each monitoring site. A total of 18 samples will be generated in the field by pumping ultrapure water through the sampling system.
The goal of this project is to update existing bacteria and Total Suspended Solids (TSS) source inventory through desktop survey and field reconnaissance to identify and prioritize locations to reduce sediment and bacteria loading to the Clearwater River; then, design and implement best management practices (BMPs) at prioritized locations to reduce loading.
The goal of this project is to develop a core team of wastewater professionals and academics engaged in understanding and solving wastewater-related problems in Minnesota, with national relevance. The team will promote the use of new technology, designs and practices to address existing and emerging wastewater treatement challenges, including the treatement of wastewater for reuse and the emergence of new and unregulated contaminants.
The goal of this project is to develop and complete the Watershed Restoration and Protection (WRAP) process and report, while also enlarging and sustaining a public participation process that encourages local ownership of water quality problems and solutions (civic engagement).
Civic engagement strategies including education public participation in watershed work and expanded knowledge, technical input into and review of stressor id process and report, Total Maximum Daily Load (TMDL) reports, implementation plans and protecion strategies.
This project provides grant funding to counties to enhance the delivery systems for SSTS activities, including grants to low-income landowners to address systems that pose an imminent threat to public health or safety or fail to protect groundwater.
The goal of this project is to construct, calibrate, and validate a Hydrological Simulation Program FORTRAN (HSPF) model for Minnesota portions of the Des Moines River watershed.
This training will be for State employees who have purchased this new type of discharge measuring equipment. This training is needed to ensure that accurate and complete discharge measurements are made which is supplied to Minnesota Department of Natural Resources (DNR), Consulting firms, Local units of government, federal government and Minnesota Pollution Control Agency (MPCA) modelers.
The goal of this protect is to protect the water quality of the Mississippi River at Winona, MN through the installation of a downtown Winona parking lot rain garden.
The purpose of the project is to fill critical data gaps - this data will provide a foundation for future development of watershed models, Total Maximum Daily Load (TMDL) reports and the creation of a Watershed Restoration and Protection Strategy (WRAPS) report.
The goal of this project is to create a contact strategy for community/landowner opportunities, obstacles, and opinions on land management and water quality that will result in the identification of restoration and protection strategies for the East Fork Des Moines River watershed.
The focus of this project will be on protection efforts to maintain or improve the water quality of Forest Lake by reducing phosphorus loads to the lake, especially from storm water. The two main objectives of this project are to compile and make minor updates to a large body of diagnostic work that already exists for Forest Lake, and to develop a comprehensive, site-specific implementation plan for best management practices (BMPs).
Groundwater sample collection and analysis will be conducted for contaminants of emerging concern (CEC) at large subsurface treatment systems (LSTS) and rapid infiltration basins (RIB), using an enzyme linked immunosorbent assay (ELISA) methodology. Results from the ELISA analysis will be reported to the MPCA and used to conduct follow-up investigations at a select number of these sites.
This grant will cover all components of water chemistry sampling for pollutant load monitoring at four sites. Of those four sites, two of them are subwatershed sites that will be monitored seasonally and two of them are basin/major watershed sites that will be monitored year round. The Monitoring Coordinator for the Sauk River Watershed District will be responsible for sample collection, data management tasks, attending weekly call in meetings and will coordinate additional help from other staff members and/or interns if needed.
The purpose of this monitoring project is to maintain water quality data collection, build on local partnerships, and develop a better of understanding of what impacts the rivers located in central Minnesota.
Sherburne Soil and Water Conservation District (SWCD) will subcontract with Clearwater River Watershed District (CRWD) to cooperatively coordinate monitoring of three locations within the Mississippi River (St. Cloud) Watershed. A total of four staff (two from each district) will communicate to ensure that the locations are monitored according to the WPLMN Standard Operating Procedures (SOPs) for AIS and non AIS sites
Monitoring the health of Minnesota rivers is vital in determining, maintaining, and improving the health of the rivers for the environment and public use. The scope of this project is to collect surface water chemistry samples at designated sampling locations during appropriate time periods and at appropriate frequencies during these time periods for 1 year beginning in February 2015. The data collected and submitted to MPCA will provide information necessary to determine stream characteristics and calculate water quality pollutant loads.
Provide education, outreach and civic engagement necessary for the development of structural and non-structural best management practices needed to improve water quality within the Greater Blue Earth River Basin. General Education will have a regional focus to landowners. Outreach effort will be focused on regional officials, staff and landowners. Civic engagement efforts will have a smaller watershed scale focus with efforts resulting in structural BMPs being placed on the land and non-structural BMPs being adopted. Implementation of structural best management practices on the land.
The purpose of this project is to develop a framework to implement best management practices (BMPs) on ditches in headwater areas utilizing a partnership between drainage staff and the Greater Blue Earth River Basin Alliance (GBERBA). By replacing failing side-inlets with an alternative design, we can make strides towards our water quality and water quantity goals. The alternative inlets serve to prevent sediment and phosphorus from washing downstream and the design can also alleviate peak flows by temporarily storing stormwater.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy (WRAPS) report to maintain and improve water quality for the Hawk Creek Watershed.
This project will sample and monitor 18 sites for chemical, physical and bacteriological parameters for two years in coordination with the 2015-16 Surface Water Assessment Grant (SWAG) work plan proposal. Headwaters Science Center (HSC) will be the project lead and recruit volunteer students from Trek North, Bug-O-Nay-Ge-Shig, and Deer Lake high schools as well as to two AmeriCorps volunteer crews. An experienced Minnesota Pollution Control Agency (MPCA) environmental scientist will be the project lead responsible for oversight and full compliance to MPCA protocols.
The goal of this project is to construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models: Lake Superior North and Lake Superior -South. The contractor will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that these models generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Construct, calibrate and validate 3 Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the St Louis, Cloquet, and Nemadji River Watersheds.
Construct, calibrate, and validate three Hydrologic Simulation Program FORTRAN (HSPF) watershed models that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs).
This project will finalize the guidance document to ensture consistency and validity of future Hydrological Simulation Program FORTRAN (HSPF) model applications within the State of MN. This improved guidance will help to ensure consistency and validity of future HSPF model applications within the State as part of the One Water Program.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process for the Minnesota River–Headwaters and Lac qui Parle watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports.
The goal of this project is to continue and finalize Hydrological Simulation Program FORTRAN (HSPF) watershed model construction and complete the calibration/validation process. The consultants will produce HSPF watershed model applications for the Lake Superior North and Lake Superior South watersheds that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) projects.