The goal of the project is to complete the dataset for the assessment of Aquatic Recreation Use in Cedar Lake by monitoring total phosphorus, chlorophyll-a, and secchi depth.
The goal of this project is to complete a two-year data set for physical, bacterial, and water chemistry sampling for the Intensive Watershed Monitoring Plan to aid MPCA’s assessment of the aquatic health of the Mississippi Headwaters(HUC 07010101) Watershed.
The goal of this project is to collect data, water chemistry and field parameters, which will be paired with biological data collected by the MPCA to assess water quality conditions at seven sites along targeted reaches within the Snake River Watershed and five sites in the Two River Watershed.
This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
This project will monitor six sites within the Minnesota River Basin: Hawk Creek near Maynard, Hawk Creek near Granite Falls, Beaver Creek near Beaver Falls, Yellow Medicine River near Granite Falls, Yellow Medicine River near Hanley Falls, and Spring Creek near Hanley Falls. The sites will be monitored according to MPCA’s Major Watershed Load Monitoring Standard Operating Procedure, which is the procedure being followed for sites currently monitored by the Hawk Creek Watershed Project (HCWP).
The MPCA has identified 13 stream sites in the watershed to characterize watershed water quality. This project will supplement and complement the identification of the top 50 sites in the watershed that are contributing to water impairment and also help in identification of priority watersheds in the re-write of the watershed comprehensive plan. Water samples and field measurements will be collected at each monitoring location ranging from baseline events to high flow events.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in Ramsey county and Hennepin county. This project will provide services and oversight of the installation for up to 16 well sites.
An interagency workgroup is developing recommendations for best practices and policies for water reuse in Minnesota. Recommendations will include both regulatory and non-regulatory approaches to successful implementation of water reuse. The workgroup will evaluate current regulations, practices, and barriers, and quantify and determine acceptable health risks associated with water reuse applications. The University of Minnesota is collecting and analyzing field data for use in targeting Minnesota-specific risks.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
Widseth Smith Nolting (WSN) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
Widseth Smith Nolting (WSN) will evaluate and recommend to Minnesota Pollution Control Agency (MPCA) groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration.
Contractor assistance with site selection, reconnaissance and obtaining access for installation of ambient groundwater monitoring wells in northcentral and northeastern Minnesota. This project will provide services and oversight of the installation for up to 31 well sites.
Partner: Minnesota Indian Affairs Council
American Indian undergraduate students from across Minnesota participated in this unique summer educational experience. The students selected for this intensive 17-day residential program attended onsite presentations throughout Minnesota and experienced hands-on learning about the museum and archaeology fields and other historical and cultural preservation organizations.
The goal of this project is to develop a stream restoration opportunities matrix for the Amity Creek watershed, which will prioritize the various protection and restoration options in the watershed for the Minnesota Pollution Control Agency (MPCA) and local partners.
This project will be a complete TMDL report for the Biota and Bacteria (E. coli) impairments for the Ann River Watershed. The water bodies associated with these impairments will then be removed from the MPCA’s impaired waters list, and implementation activities to restore the water bodies will begin.
To address the problems caused by invasive species, the 1991 Minnesota Legislature directed the Minnesota Department of Natural Resources (DNR) to establish the Invasive Species Program. The program is designed to implement actions to prevent the spread of invasive species and manage invasive aquatic plants and wild animals (Minnesota Statutes 84D).
The three primary goals of the DNR Invasive Species Program are to:
1. Prevent the introduction of new invasive species into Minnesota.
2. Prevent the spread of invasive species within Minnesota.
The DNR is working with local communities and an interagency team to define, prioritize, and establish groundwater management areas in Minnesota. Groundwater management areas will have increased data collection and monitoring that allow the state and local communities to understand water supplies, uses, limitations, and threats to natural resources that depend on groundwater. This information will support detailed aquifer protection plans that ensure equitable and sustainable groundwater and drinking water use for the future.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project is a continuation of Statewide Lake study that revealed the obiquitous presence of endrocrine active compounds (EACs) in many MN Lakes. The initial project findings suggested two potential knowledge gaps in our understanding of EACs and their effects in lake environments. First, the sources of EACs and their entrance points into lakes need to be better defined than was possible in our previous statewide lake study.
This project will promulgate a nitrate water quality standard to address aquatic life toxicity, and gather information needed to support the development of total nitrogen (N) loading reduction strategies for Minnesota’s waters and also address Minnesota’s contribution to marine water hypoxia. Project will also develop a framework for a watershed nitrogen planning aid that can be used to optimize selection of Best Management Practice (BMP) systems for reducing nitrogen.
Great River Energy (GRE) operates a power plant in the City of Elk River which generates electricity by incinerating municipal solid wastes. The plant is located proximate to the City of Elk River wastewater treatment plant (WWTP). This project will result in a corresponding reduction of groundwater use by GRE.
The goals of this project are to develop and implement a stakeholder and public engagement program, update the Hydrological Simulation Program FORTRAN (HSPF) models for the Big Fork and Little Fork River Watersheds, develop Total Maximum Daily Load (TMDL) studies for impaired waterbodies, remove naturally impaired streams from the impairment list, develop a Watershed Restoration and Protection Strategy (WRAPS) report, and to conduct civic engagement activates necessary to ensure project success.
This project will complete a Total Maximum Daily Load Implementation Plan for the watersheds of Big Sandy and Minnewawa Lakes. This restoration plan will provide pollution reduction and watershed management strategies that are developed with input from stakeholders in the watersheds.
The purpose of this project is to provide stream and large river macro invertebrate sample processing and identification for the Minnesota Pollution Control agency (MPCA) Biological Monitoring Unit.
The final product will consist of; data submitted electronically to the MPCA, project reference specification, return of all identified specimens, and an external and internal QA/QC report.
Vegetated buffer and filter strips along waterways is a practice that addresses many surface water concerns. Establishing permanent vegetation along waterways is an implementation priority in the Blue Earth County Water Management Plan and required by local ordinance and Minnesota Rules. Minnesota Shoreland Rules, Chapter 6120 and the County Shoreland Ordinance contain standards for agricultural uses in shoreland. Agricultural uses are permitted in shoreland areas if steep slopes and shore and bluff impact zones are maintained in permanent vegetation.
Ravine, stream bank and bluff erosion contribute significant amounts of sediment to rivers and streams. The MPCA report, Identifying sediment sources in the Minnesota River Basin, found the Blue Earth and Le Sueur watersheds contribute as such as half of the sediment to the Minnesota River, even though they account for only one-fifth of its drainage area. These watersheds contain the majority of the bluffs in the basin as well as many large
ravines.
This project will utilize a systematic approach to identify principal sources, or “hot-spots”, of sediment contributions and work with individual landowners, county drainage officials, and municipalities to coordinate and implement critical Best Management Practices (BMP’s), establish demonstration sites, and provide education and outreach efforts. This project will also establish baseline watershed data with the addition of site specific information, and determine high priority watersheds. Appropriate practices will be identified and mapped utilizing GPS and GIS equipment and software.
This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
This Total Maximum Daily Load (TMDL) project will develop a TMDL Report and Implementation Plan defining the sources contributing to the impairments and outlining the steps necessary to bring Bluff Creek back to meeting water quality standards.
This project will develop a watershed approach plan, including impaired waters allocations, for the Mustinka Watershed, located at the headwaters of the Red River of the North, in western Minnesota, lying partly in Grant, Stevens, Ottertail, Big Stone, and Traverse counties. The watershed approach plan will set water quality goals for the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet state standards and are listed as impaired.
This project will continue to develop, and calibrate/validate the hydrology of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Buffalo River watershed. The consultant will add representation of point source discharges to the model. The consultant will compile flow data for the purposes of calibration and validation. An initial hydrologic calibration will be performed and submitted for approval.
The Chicano Latino Affairs Council and the Humanities Center will build on the grant received last year, which was intended to identify the elements of success in programs for Latino high school students and ways to replicate them. Applying the findings of CLAC's and HACER's research, CLAC will integrate its biennium goal of improving levels of educational achievement for Latino youth with the Legacy goal of enriching Minnesota’s cultural legacy by piloting the program in two Minnesota schools.
A multi-partner effort has begun to study the amount of nitrate-nitrogen (nitrate) leaching loss that occurs below an agricultural field recently converted from timber land to irrigated row crop production. The landowner has made the property and their staff available to better understand the deep drainage and nitrate leaching dynamics following this type of land use change. This study is unique.
Complete section 3 of Watershed Restoration and Protection Strategy (WRAPS) document for the Cannon and Zumbro Watersheds and provide input to sections 1 and 2.
The goal of this project is to use a science-based and participatory approach to understanding and promoting conservation practices in the agricultural community.
The data collected in this workplan is the foundation for an accurate TMDL allocation and accurate implementation strategy design. Current and historic phosphorus inputs will be calculated and evaluated as to source. Nutrient and algal history and trends in sedimentation will be reconstructed to identify ecological changes that have occurred in the lakes both recently and historically.
Continued TMDL project to support next phases associated with completion of TMDL's for ten lakes in the Carnelian Marine Saint Croix Watershed District (CMSCWD). Ten lakes are; East Boot, Fish, Goose, Hay, Jellum’s, Long, Loon, Louise, Mud and South Twin.
This project will include lake and stream monitoring on 23 lakes and 4 streams found within the Leech Lake River and Pine River watersheds in Cass County. The project will be conducted in an effort to gain sufficient data on these data-deficient lake and stream sites within these watersheds. All of the proposed monitoring sites are target sites located in the targeted watersheds for 2012. Cass ESD is partnering with Hubbard SWCD, the Leech Lake Band of Objibwe, and RMB Environmental Laboratories to conduct the fieldwork for this project.