All Projects

Showing 1 - 30 of 30 | Export projects
2019 Fiscal Year Funding Amount
$1,375,000
2018 Fiscal Year Funding Amount
$1,375,000
2017 Fiscal Year Funding Amount
$1,375,000
2016 Fiscal Year Funding Amount
$1,375,000
2015 Fiscal Year Funding Amount
$1,375,000
2014 Fiscal Year Funding Amount
$1,375,000
2013 Fiscal Year Funding Amount
$1,500,000
2012 Fiscal Year Funding Amount
$1,500,000
2011 Fiscal Year Funding Amount
$525,000
2010 Fiscal Year Funding Amount
$600,000
Fund Source

The DNR is working with local communities and an interagency team to define, prioritize, and establish groundwater management areas in Minnesota. Groundwater management areas will have increased data collection and monitoring that allow the state and local communities to understand water supplies, uses, limitations, and threats to natural resources that depend on groundwater. This information will support detailed aquifer protection plans that ensure equitable and sustainable groundwater and drinking water use for the future.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$62,485
Fund Source

This project involves the extension and update of the Hydrological Simulation Program FORTRAN (HSPF) model for the Bois de Sioux and Mustinka watersheds.

Recipient
Tetra Tech
2017 Fiscal Year Funding Amount
$80,038
Fund Source

This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$49,981
Fund Source

The contractor will add more functionality to HSPEXP+ Hydrological Simulation Program FORTRAN (HSPF) tool and conduct 2016 HSPF Modeling Contractors Meeting

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$42,152
Fund Source

The goal of this project is to enhance the current version of the Enhanced Expert System for Calibration of HSPF (HSPEXP+) so that it can more easily and quickly be used for hydrology calibration, water quality calibration, generate reports and graphs.

2014 Fiscal Year Funding Amount
$1,808,000
Fund Source

Minnesota’s use of groundwater has increased over the last two decades. An increasing reliance on groundwater may not be a sustainable path for continued economic growth and development. The DNR is establishing three pilot groundwater management areas (GWMA) to help improve groundwater appropriation decisions and help groundwater users better understand and plan for future groundwater needs associated with economic development.

Recipient
Tetra Tech
2017 Fiscal Year Funding Amount
$3,969
Fund Source

This project is for constructing, calibrating, and validating a Hydrologic Simulation Program FORTRAN (HSPF) watershed models for the Minnesota portions of the Des Moines Headwaters, Lower Des Moines, and East Fork Des Moines watersheds. The model can be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) reports. This model generates predicted output timeseries data for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with observed data.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$34,955
Fund Source

The goal of this project is to develop the guidance needed for water quality parameter evaluation and calibration for Hydrological Simulation Program – FORTRAN (HSPF) applications that utilize the general water quality constituent routines on the land surface to generate loadings of nutrients and organic material for input to water bodies to support dissolved oxygen (DO), nutrient, and algal simulation.

Recipient
Houston Engineering Inc
2017 Fiscal Year Funding Amount
$173,118
Fund Source

The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.

Recipient
Lake of the Woods SWCD
2015 Fiscal Year Funding Amount
$305,620
2016 Fiscal Year Funding Amount
$66,412
2017 Fiscal Year Funding Amount
$47,202
Fund Source

The Lake of the Woods (LOW) Total Maximum Daily Load (TMDL) study will: (1) identify water quality goals for the Minnesota portions of the LOW/Rainy River Watershed; (2) recommend nutrient allocations to achieve TMDLs where waters do not meet standards; and (3) provide opportunities for stakeholders to engage in the process of watershed-management planning to adopt protection and restoration strategies. The project will include existing in-lake and watershed model updates, TMDL component development, restoration plan development, and public participation.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$96,888
Fund Source

This project will complete the Total Maximum Daily Load (TMDL) study and Watershed Restoration and Protection Strategies (WRAPS) for the Lake Superior North watershed. Two segments of the Flute Reed River are impaired for aquatic life due to elevated turbidity and total suspended solids. The lower Poplar River is also listed as impaired but significant progress has occurred in the last 10 years. A TMDL and implementation plan have been completed for the lower Poplar River impairment. All other waters meet water quality standards and will be considered for protection measures.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$90,980
Fund Source

The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.

Recipient
Minnesota Pollution Control Agency
2014 Fiscal Year Funding Amount
$4,105,849
2015 Fiscal Year Funding Amount
$4,173,501
2016 Fiscal Year Funding Amount
$5,309,905
2017 Fiscal Year Funding Amount
$6,028,498
Fund Source

This project supports activities by Minnesota Pollution Control (MPCA) Watershed Division staff that provide technical assistance, project oversight, coordination, outreach and other agency activities associated with assessing, listing and conducting Total Maximum Daily Load (TMDL) studies throughout the State of Minnesota. Project also includes lab analysis, equipment, and fieldwork expenses associated with TMDL work at the MPCA.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$109,928
Fund Source

The goal of this project is to refine the nutrient and algae simulation in the Minnesota River basin using all relevant available sources of information. The outcome of this work order is a revised Hydrological Simulation Program – FORTRAN (HSPF) watershed model application for the Minnesota River basin that correctly represents nutrient sources and algae.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$75,000
Fund Source

The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$19,996
Fund Source

The goal of this project is to extend through 2016, calibrate, and validate the existing watershed model using Hydrological Simulation Program FORTRAN (HSPF) for the Pomme de Terre River Watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) studies.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$49,999
Fund Source

The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program – FORTRAN (HSPF) watershed models in the Red Lake River, Thief River, Clearwater River and Red Lake watersheds.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$86,582
Fund Source

The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$9,998
Fund Source

The goal of this project is to update the time series and calibration for the Sandhill River Hydrological Simulation Program – FORTRAN (HSPF) model.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$44,982
Fund Source

The contractor will provide 3 Scenario Analysis Manager (SAM) training sessions in the fall of 2016 for use with Hydrological Simulation Program FORTRAN (HSPF) model applications.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$69,995
Fund Source

The contractor will collect and process the necessary files needed to develop a Processing Application Tool for HSPF (PATH) and Scenario Application Manager (SAM) project for 30 HUC 8 watersheds in Minnesota. SAM provides a graphical interface to the Hydrological Simulation Program FORTRAN (HSPF) model applications and expands the state’s investment in HSPF to a broader audience in support of the development of Total Maximum Daily Load (TMDL) studies and Watershed Restoration and Protection Strategy (WRAPS) reports.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$211,886
Fund Source

The goal of this project is to develop forestry related best management practice (BMP) pollutant reduction/management efficiencies, costs, and management information applicable to Minnesota forests and incorporate these BMPs into the Hydrological Simulation Program FORTRAN (HSPF) model Scenario Application Manager (SAM) tool. By incorporating forestry BMPs into the existing SAM tool, forestry related management scenarios can be evaluated for potential impacts on surface waters and can inform the development of watershed restoration and protection strategies.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$27,136
Fund Source

The goal of this work order is to collect and process the watershed specific files needed to create the Scenario Application Manager (SAM) project files to apply the SAM software in selected major watersheds in Minnesota where an Hydrological Simulation Program – FORTRAN (HSPF) model has been developed. This work order will also involve technical support for the SAM users who are applying the SAM projects.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$24,984
Fund Source

The goal of this project is to extend, calibrate, and validate the existing Hydrological Simulation Program FORTRAN (HSPF) model for the Snake River Watershed in the Red River Basin. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.

Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$134,960
Fund Source

The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.

Recipient
Tetra Tech
2017 Fiscal Year Funding Amount
$99,980
Fund Source

This goal of this project is the completion of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Upper Red River watershed in the Red River Basin. This includes the construction, calibration, and validation of the model for hydrology and water quality parameters.

Recipient
RESPEC
2017 Fiscal Year Funding Amount
$99,992
Fund Source

The goal of this project is to develop guidance for water quality parameter evaluation and calibration for Hydrological Simulation Program FORTRAN (HSPF) applications focused on dissolved oxygen (D.O.), nutrient, and algal simulation, along with a demonstration of the guidance by step-by-step application to D.O.-impaired Minnesota watersheds.

2019 Fiscal Year Funding Amount
$260,000
2018 Fiscal Year Funding Amount
$248,238
2017 Fiscal Year Funding Amount
$223,000
2016 Fiscal Year Funding Amount
$223,000
2015 Fiscal Year Funding Amount
$190,000
2014 Fiscal Year Funding Amount
$190,000
2013 Fiscal Year Funding Amount
$235,000
2012 Fiscal Year Funding Amount
$235,000
2011 Fiscal Year Funding Amount
$190,000
2010 Fiscal Year Funding Amount
$180,000
Fund Source

This project delineates and maps watersheds (drainage areas) of lakes, rivers, streams, and wetlands for the state of Minnesota and provides watershed maps in digital form for use in geographic information systems. These maps become the basis for clean water planning and implementation efforts.

2019 Fiscal Year Funding Amount
$1,549,694
2018 Fiscal Year Funding Amount
$1,567,393
2017 Fiscal Year Funding Amount
$1,638,038
2016 Fiscal Year Funding Amount
$1,624,000
2015 Fiscal Year Funding Amount
$1,591,245
2014 Fiscal Year Funding Amount
$1,750,000
2013 Fiscal Year Funding Amount
$1,630,000
2012 Fiscal Year Funding Amount
$1,630,000
2011 Fiscal Year Funding Amount
$1,182,500
2010 Fiscal Year Funding Amount
$689,000
Fund Source

The DNR's Regional Clean Water Specialists and Area Hydrologists work with other state agencies and local partners to help identify the causes of pollution problems and determine the best strategies for fixing them. A statewide coordinator works with the DNR and external partners to ensure funds are spent in the most effective and efficient manner to meet the State's clean water goals.

2019 Fiscal Year Funding Amount
$165,000
2018 Fiscal Year Funding Amount
$176,762
2017 Fiscal Year Funding Amount
$202,000
2016 Fiscal Year Funding Amount
$202,000
2015 Fiscal Year Funding Amount
$185,000
2014 Fiscal Year Funding Amount
$185,000
2013 Fiscal Year Funding Amount
$230,000
2012 Fiscal Year Funding Amount
$230,000
2011 Fiscal Year Funding Amount
$95,000
2010 Fiscal Year Funding Amount
$85,000
Fund Source

The DNR provides technical support regarding the causes of and solutions to drainage impacts, actively engaging with other Minnesota modelers and scientists working on issues related to altered hydrology. We use state-of-the-art models to look at cumulative impacts of drainage and land-use practices and determine the benefits of site-specific best management practices. This involves collaboration with multiple partners and at multiple scales.