All Projects

Showing 1 - 9 of 9 | Export projects
Recipient
City of Rushmore
2015 Fiscal Year Funding Amount
$4,000
Art Project
Recipient
Metropolitan Council/USGS
2015 Fiscal Year Funding Amount
$252,970
2016 Fiscal Year Funding Amount
$247,604
Fund Source

A cooperative study was conducted by the U.S. Geological Survey (USGS), the Metropolitan Council, and the Minnesota Department of Health to assess groundwater and surface-water interactions in lakes in the northeast Twin Cities Metropolitan Area (TCMA), including White Bear Lake. An important product of the study was the creation of a groundwater-flow model focused on the northeast TCMA. The groundwater flow model is available for future use to assess the effects of groundwater withdrawals on lake levels as well as to describe other groundwater and surface-water interactions.

Recipient
United States Geological Survey
2015 Fiscal Year Funding Amount
$231,946
Fund Source

Groundwater sample collection and analysis will be conducted for contaminants of emerging concern (CEC) at large subsurface treatment systems (LSTS) and rapid infiltration basins (RIB), using an enzyme linked immunosorbent assay (ELISA) methodology. Results from the ELISA analysis will be reported to the MPCA and used to conduct follow-up investigations at a select number of these sites.

Recipient
United States Geological Survey (USGS)
2015 Fiscal Year Funding Amount
$18,375
Fund Source

The study will assess existing phosphorus data records and create a model to explain phosphorus loading into the Red River of the North. Studies have found that the majority of nutrient loading in the stream located in agricultural areas occurs with sediment loading since nutrients are typically bound to sediment particles.

Recipient
U.S. Geological Survey
2015 Fiscal Year Funding Amount
$394,000

The groundwater contained in confined glacial aquifers provides clean drinking water to many Minnesota residents. An important factor affecting the long-term sustainability of these aquifers is how water infiltrates through clayey deposits of overlying glacial till, which act as barriers to contaminants but also limit water flow and aquifer recharge. Very little is actually known about the properties and infiltration of water through till, which hinders the ability to accurately define the sustainability of these aquifers.

Recipient
United States Geological Survey
2015 Fiscal Year Funding Amount
$11,780
Fund Source

The objectives of this project are to collect real-time parameter data for specific conductance, water temperature, pH, dissolved oxygen, turbidity and stream flow at the United States Geological Survey (USGS) gaging stations located at Fargo, ND and Grand Forks, ND on the Red River of the North. Data will be published on the USGS Nation Water Information System (NWIS) website and in the USGS Annual Report.

Agency staff and local partners will gain an improved understanding of the nautre of the chemical and physical attributes of the Red River of the North.

Recipient
United States Geological Survey (USGS)
2012 Fiscal Year Funding Amount
$200,000
2013 Fiscal Year Funding Amount
$200,000
2014 Fiscal Year Funding Amount
$100,000
2015 Fiscal Year Funding Amount
$100,000
Fund Source

The Statewide Sediment Network was established to measure the levels of suspended sediment concentrations and particle size distributions at eight sites across Minnesota to evaluate the amount of sediment carried by rivers. USGS sample collection and laboratory analysis techniques provide a more rigorous, robust, and technically accurate measure of sediment in water than the current use of total suspended solids as the measure of sediment in water.

Recipient
United States Geological Survey, Minnesota
2015 Fiscal Year Funding Amount
$132,500
Fund Source

The project will improve water management in the State of Minnesota. The result will be a water management tool that can be used by the Minnesota Pollution Control Agency (MPCA) to determine low flow statistics when establishing permit discharge limits and by the Minnesota Department of Natural Resources (MDNR) to help in water appropriations permitting.

Recipient
U.S. Geological Survey
2015 Fiscal Year Funding Amount
$129,000

Effective groundwater management requires accurate knowledge about the water budget, which is the amount of water stored within the system in aquifers and the amount of water flowing through the overall hydrologic system including water flowing at the surface, water flowing from above ground down into aquifers, and water flowing between aquifers below the surface.