The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
Phase 2 of the Mississippi River - Brainerd Watershed Restoration and Protection Strategy (WRAPS) project will: develop the WRAPS report and the Total Maximum Daily Load (TMDL) study, which allocates pollutant load reductions for impaired waters; implement a civic engagement plan; and develop watershed modeling scenarios to help understand implementation needs in the watershed.
The project goal is to conduct water chemistry monitoring at four subwatershed sites and one basin site in 2016, 2017, 2018 and 2019. Water chemistry monitoring will be conducted at a wide range of flow conditions with emphasis of collecting samples during periods of moderate and high flows after runoff events, as defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
The Greater Blue Earth River Basin Alliance (GBERBA) along with Soil and Water Conservation Districts, Counties, landowners, and drainage authorities in the ten member counties will install conservation drainage practices to improve water quality. 103E drainage systems with documented sediment or water quality issues are the focus with the goal of installing 52 practices such as improved side inlets (grade stabilization structures), alternative tile inlets, denitrifying bioreactors, saturated buffers, storage wetlands and others.
The Platte River is listed by MPCA as impaired for fish bioassessments and water temperature. It is a recreational river used by many swimmers, paddlers and flotation users. The Platte is a major tributary to the Mississippi River which is the primary drinking water supply from St. Cloud to the Gulf. The Mississippi River segment immediately below Royalton is also impaired and therefore remedial efforts above are imperative.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will extend the simulation period for the Hydrological Simulation Program - FORTRAN (HSPF) models for the Grand Rapids, Brainerd, Crow Wing, Redeye, Long Prairie, Sartell, Sauk, St. Cloud, and Crow watersheds, and review and comment on the calibration.
The primary goal of this project is to examine the calibration and validation of recently extended Hydrological Simulation Program – FORTRAN (HSPF) watershed models for the Mississippi River-Headwaters, Mississippi River-Grand Rapids, Mississippi River-Brainerd, Mississippi River-Sartell, Mississippi River-St. Cloud, Leech Lake, Pine River, Crow Wing River, Long Prairie River, and Redeye River watersheds and revise the calibration.
The main outcome of the project will be the development of a Total Maximum Daily Load (TMDL) study that address total suspended solids/turbidity impairments of the Mississippi River (Swan River to Crow Wing River). Community outreach to communicate the results and strategies for restoration will also take place during this project.