Minnesota's Legacy

All Projects

Showing 1 - 9 of 9 | Export projects
Recipient
Wenck Associates, Inc.
2013 Fiscal Year Funding Amount
$139,450
Fund Source

The MPCA, in partnership with the Vermillion River Watershed Joint Powers Organization, contracted with Wenck Associates, Inc., to develop the Stressor Identification (SID) Report; and develop the necessary models for the Vermillion River Watershed Restoration and Protection Strategies (WRAPS) as part of Phase I. The final Vermillion River Watershed SID report discusses all of the analysis that was done in the watershed to identify the primary stressors causing the fish and macroinvertebrate impairments in the watershed.

Dakota
Scott
Recipient
Tetra Tech
2014 Fiscal Year Funding Amount
$90,000
Fund Source

The goal of this project is to finalize HSPF watershed models for the St. Louis, Cloquet, and Nemadji Rivers.

Aitkin
Carlton
Itasca
Pine
St. Louis
Recipient
RESPEC
2011 Fiscal Year Funding Amount
$174,579
Fund Source

This project will construct, calibrate, and validate two Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The consultant will produce HSPF models that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDLs) at the Big Fork River and Little Fork River watersheds.

Itasca
Koochiching
St. Louis
Recipient
LimnoTech
2018 Fiscal Year Funding Amount
$75,630
Fund Source

The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.

Anoka
Carver
Dakota
Dodge
Goodhue
Hennepin
Le Sueur
McLeod
Mower
Nicollet
Olmsted
Ramsey
Renville
Rice
Scott
Sherburne
Sibley
Steele
Wabasha
Washington
Wright
Recipient
LimnoTech
2016 Fiscal Year Funding Amount
$62,280
Fund Source

The goal of this project is to prepare a draft Lake Pepin Total Maximum Daily Load (TMDL) Report. Lake Pepin is impaired by high levels of nutrients that cause excessive growth of algae.

Dakota
Goodhue
Scott
Wabasha
Recipient
Tetra Tech Inc
2019 Fiscal Year Funding Amount
$149,903
Fund Source

The goal of this project is to simulate up to ten scenarios using the recently completed Hydrologic Simulation Program FORTRAN (HSPF) model for the Mississippi River–Lake Pepin (MRLP) watershed. The mode will be used to investigate a variety of management scenarios to support further planning work and implementation in the watershed. Model scenarios are being developed to inform 1W1P planning activities and future implementation.

Olmsted
Wabasha
Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$90,980
Fund Source

The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program – FORTRAN (HSPF) watershed model for a portion of the Mississippi River-Lake Pepin watershed.

Goodhue
Wabasha
Recipient
Tetra Tech Inc
2017 Fiscal Year Funding Amount
$75,000
Fund Source

The goal of this project is to complete the construction, calibration, and validation of a Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail River watershed. The contractor will produce an HSPF model that can readily be used to provide information to support conventional parameter Total Maximum Daily Load (TMDL) Studies. The model will generate predicted output for hydrology, sediment, nutrients, and dissolved oxygen that is consistent with observed data.

Becker
Clay
Clearwater
Mahnomen
Otter Tail
Wilkin
Recipient
Tetra Tech
2016 Fiscal Year Funding Amount
$80,000
Fund Source

The goal of this project is to construct, calibrate, and validate a Hydrologic Simulation Program FORTRAN (HSPF) watershed model for the Otter Tail watershed. The contractor will produce a HSPF watershed model application(s) that can readily be used to provide information to support conventional parameter Total Maximum Daily Loads (TMDLs). The contractor will clearly demonstrate that this model generates predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen that are consistent with available sets of observed data.

Becker
Clay
Clearwater
Mahnomen
Otter Tail
Wilkin