The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
This project will develop a Final TMDL report and Implementation Plan for the Bluff Creek Watershed. The main outcomes of this project are the development of a Final TMDL Report approved by MPCA and EPA and a Final Implementation Plan approved by MPCA.
This project will result in the final the Bois de Sioux River Watershed Restoration and Protection Strategies (WRAPS) report and Total Maximum Daily Load (TMDL) study. This work order will authorize the consultant to address all comments received during the public notice period and produce the final WRAPS report for the Minnesota Pollution Control Agency's final approval and a final TMDL study for United States Environmental Protection Agency's (EPA) final approval.
This project will develop a watershed approach plan, including impaired waters allocations, for the Mustinka Watershed, located at the headwaters of the Red River of the North, in western Minnesota, lying partly in Grant, Stevens, Ottertail, Big Stone, and Traverse counties. The watershed approach plan will set water quality goals for the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet state standards and are listed as impaired.
The purpose of this project is to create a shared plan for the Watershed Restoration and Protection Strategy (WRAPS) process with roles, responsibilities, commitments and deliverables clearly understood by all (Minnesota Pollution Control Agency (MPCA), Chippewa River Watershed, and local partners). The MPCA and the Chippewa River Watershed Project (CRWP) will be working together to ascertain the level of involvement that local units of government and other partners want to engage in for the second round of the WRAPS process.
This project will complete a comprehensive and sustainable Major Watershed Restoration and Protection Strategies report for the Chippewa River, its tributary streams, and the many lakes in the Chippewa River watershed that is understandable and adoptable by local units of government and residents.
The City of Waconia will implement its 2012-13 Storm Pond Cleaning Project and 2012 Improvement Project which includes removal and disposal of more than 2,200 cubic yards of PAH contaminated sediment from 3 stormwater ponds. The contaminated sediment will be disposed of in the Waste Management industrial landfill located in Burnsville, MN.
The Cottonwood River watershed is one of the last remaining watersheds to complete Cycle I of the Watershed Restoration & Protections Strategies (WRAPS) process. The scope of this project upon completion is have two reports developed; a Watershed Restoration and Protection Strategies report and a Total Maximum Daily Load (TMDL) for the entire watershed.
The Minnesota County Geologic Atlas program is an ongoing effort begun in 1982 that is being conducted jointly by the University of Minnesota's Minnesota Geological Survey and the Minnesota Department of Natural Resources (DNR). The program collects information on the geology of Minnesota to create maps and reports depicting the characteristics and pollution sensitivity of Minnesota's ground-water resources.
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
The Buffalo River Watershed Pilot Project is one of two pilots in Minnesota designed to develop a watershed approach for managing Minnesota’s surface waters. The goal of this project is to develop a plan that will guide surface water quality management throughout the watershed.
This project willl complete a final TMDL document that will be submitted to EPA for approval. Document will include Lake Osakis, Clifford Lake, Faille Lake, and Smith Lake impairments. A final technical memorandum describing the elements of the model framework and any deviations from the recommended construction methodology will be also be provided with the submission of the watershed models.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will complete a comprehensive study, following a rational, step-wise process of data analysis, response modeling and comparison to the water quality standards, followed by impairment diagnosis, modeling of improvement and protection options, and development of a WRAP Report and Implementation Plan for Sunfish lake, Thompson lake, Pickerel lake, and Rogers lake.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will establish a framework and provide tools for local government and watershed projects to engage the public in a manner that will lead to water quality improvement through targeted and prioritized implementation of watershed management practices. The major components of the watershed approach that will be used for this project include; monitoring, gathering of watershed information, assessment of the data, develop of implementation strategies, and implementation of water quality protection and restoration activities.
This project includes project planning, coordination, stream reconnaissance, and begins the effort towards civic engagement/outreach components of the South Fork Crow River Watershed project. Phase I will focus towards the development of project teams, identifying stakeholders, developing an initial civic engagement strategic plan and conducting limited lake and stream monitoring.
This project approach will include monitoring and gathering of watershed information, assess the data, develop implementation strategies to meet standards and protect waters, implement water quality protection and restoration activities in the watershed. The goal of this project is to establish a framework, and to provide information and tools for local government and watershed organizations to engage the public in a manner that will lead to water quality improvement.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will set water quality goals for the Minnesota portions of the watershed, recommend allocations for achieving total maximum daily loads where waters do not meet Minnesota state standards and are listed as impaired, and recommend management strategies for those Minnesota waters meeting state standards. This project also recognizes that as monitoring continues in the watershed, additional impairments may be identified.
This project will Install buffer strips along 25 miles of ditches in the watershed, replace 50 open tile intakes, and hold workshops in the watershed to increase conservation tillage, nutrient and pesticide management, conservation drainage and restoring wetlands.
This project will offer incentives to protect 80 acres of land in filter strips and highly erodible lands adjacent to the rivers; construct 9 sediment and water control basins or terraces; replace 35 open tile intakes and advocate wetland restorations and grassland easement programs; organize a Friendship Tour to bring together Minnesota farmers, county commissioners, farm organizations, local, state and federal agency personnel to experience the watershed, farming practices, discuss future project ideas and strengthen relationships; and upgrade 37 subsurface sewage treatment systems by off
Dakota Wicohan created the first half of a leadership and civics curriculum for Dakota youth—Dakota Itancan Kagapi, or, the making of Dakota leaders. The program will be used to train Dakota youth through the inter-related strategies of remembering, reclaiming, and reconnecting with our Dakota language and lifeways to enhance the region’s civic foundation.
The Children’s Museum of Southern Minnesota (CMSM) will complete the innovative community engagement process started with the previous Legacy grant. CMSM will build upon the progress created with the previous Legacy grant by transitioning the team's focus to carrying-out of strategic access strategies that engage a diversity of community members in the exhibit development process, resulting in the completion of fabrication plans for exhibits and environments that are accessible; engaging; and reflect the diverse art, culture, and heritage of southern Minnesota.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The goal of this project is to establish load reduction requirements for impaired waters and to develop restoration strategies to improve water quality for impaired waters and protection strategies to maintain the quality of water for water bodies meeting standards.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
As a strategic document, the Legacy Strategic Agenda (LSA) has four goals that build on achievements realized during the first five years of Legacy funding. Over the next four years, the LSA strategic priorities in education, grants, partnerships and unfamiliar stories will be acted on, measured and sustained at the community level. A dedicated LSA Collaborative representing a cross-section of the history community meets quarterly around the state to guide the work of LSA Priority Action Teams and to share successes.
The goal of this project is to develop a Total Maximum Daily Load (TMDL) for all impaired stream reaches and lakes within the Long Prairie and Red Eye Watersheds.
This project will gather watershed data to support the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality for the Long Prairie River Watershed. This project will also provide an important framework for civic and citizen engagement and communication, contributing to long-term public participation in surface water protection and restoration activities throughout the watershed.
The Minnesota Land Trust provides coordination, mapping, and data management for the Metropolitan Conservation Corridors partnership. Funds are being used to coordinate the partnership, guide strategic outreach and implementation efforts, manage project data, and provide reporting and mapping of accomplishments.
This project will complete an EPA- and MPCA-approved TMDL Study and an MPCA-approved TMDL Implementation Plan that provide quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, that are understood and adoptable by local units of government and other stakeholders.
This project will create a high accuracy elevation dataset - critical for effectively planning and implementing water quality projects - for the state of Minnesota using LiDAR (Light Detection and Ranging) and geospatial mapping technologies. Although some areas of the state have been mapped previously, many counties remain unmapped or have insufficient or inadequate data. This multi-year project, to be completed in 2012, is a collaborative effort of Minnesota's Digital Elevation Committee and partners with county surveyors to ensure accuracy with ground-truthing.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.