Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
Once thought to have an essentially inexhaustible groundwater supply, Minnesotans are now realizing our rates of use are regionally unsustainable. Recent advanced modeling by the MN DNR and Metropolitan Council of aquifer supplies, in conjunction with predicted demand, indicate the major metropolitan area aquifers are currently subject to extraction rates that exceed recharge. Simply stated, we are mining our groundwater.
This project addresses the identified need for an Implementation Plan that provides an overall roadmap for the effort it will take to meet the Carnelian Marine St. Croix Multi-Lakes Total Maximum Daily Load (TMDL). An Implementation Plan will be developed, with involvement of the Project Partners and stakeholder groups, that sets forth prioritized strategies for attaining the TMDL and a method for tracking the progress of those efforts. The Implementation Plan will be restoration-focused, but will include protection-oriented information/actions as well.
Continued TMDL project to support next phases associated with completion of TMDL's for ten lakes in the Carnelian Marine Saint Croix Watershed District (CMSCWD). Ten lakes are; East Boot, Fish, Goose, Hay, Jellum’s, Long, Loon, Louise, Mud and South Twin.
This project is for Cycle 2 of the Intensive Watershed Monitoring (IWM) process for the Lower St. Croix Watershed. Seven stream sites will be monitored by the Isanti Soil and Water Conservation District (SWCD), Anoka Conservation District, and Chisago SWCD. Sampling will be conducted in 2019 and 2020 and Chemistry and field observation data will be taken.
This project will install new stormwater treatment practices in neighborhoods directly draining to Coon Lake. The objective is to remove phosphorus, which fuels algae growth, before the water is discharged into the lake. Seventeen potential project sites have been identified and ranked and include curb-cut rain gardens, swales, stabilizing stormwater discharge points, and a basin outlet modification.
The Contractor will assist in planning and executing the regular meetings of the St. Croix River Basin Team, including providing minutes of the meetings. Assist in the functioning of the priority issue subcommittees. Respond to public notices for re-issuances of NPDES permits, EAWs and other pertinent public notices, and participate in prioritized public meetings with local governmental units and water planning organizations.
Chisago County will coordinate up to three community dialogue meetings to inform its water planning decisions. The goal of the meetings will be to provide safe, productive and effective venues for citizens to become authentically engaged in the water planning process. The outcome of this Civic engagement work with Chisago County and their county water planning process will be a more engaged public in the County Water Planning Process.
This project will support the necessary activities for improving the water quality and biological community by reducing nutrients, sediment levels and managing in-stream habitat within the Goose Creek 10-digit HUC Watershed. This restoration and protection plan will identify pollutant load reduction estimates and management strategies that will be used to obtain the TMDL goals outlined in the plan.
This project will complete a Watershed Restoration and Protection Plan for the Lower St. Croix River that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, and that are understood and adoptable by local units of government and other stakeholders.
This project will support the development of whole farm conservation plans for ten (10) agricultural producers within the Sunrise River Watershed. The conservation plans will be used by the farmer and the Chisago SWCD to develop an action plan to address the resource concerns identified as part of the AgEQA program. The overall goal of the program is to prioritize conservation practices that will improve the overall water quality of the Sunrise River.
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
TMDL project in the Chisago Lakes Lake Improvement District that will develop a watershed based plan and provide strategies for water quality and aquatic ecosystem management, restoration, and protection within Sunrise River Watershed. This project will also aid in understanding the Phosphorus loading to Lake St. Croix.
This project will provide baseline data through water monitoring, recording and analyzing the results of six unassessed rivers/tributaries, three unassessed lakes and five storm water outlets in the city of Mora which drain to the Snake River; promote and implement approved BMP’s.
Implementation activities proposed as a part of this project include water quality monitoring, biotic surveys, sediment core sampling, mechanical treatment of curly-leaf pondweed (in accordance with regulations and permitting), an iron-enhanced sand filter, with a high capacity multi-stage outlet weir and 40,000 pounds of iron filings and stakeholder involvement in the design process and educational presentations.
This project will develop an Implementation Plan for restoring Lake St. Croix and impaired waters within the contributing watershed, and protect waters currently attaining water quality standards.
This project will provide information about the amount and sources of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and reduce the amount of phosphorous flowing into Lake St Croix by implementing phosphorous reduction activities. The St Croix River Association (SCRA) will coordinate with the St. Croix Basin Water Resources Planning Team (Basin Team) on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St. Croix portion of the St.
Ensuring natural resource practitioners are applying state-of-the-art approaches is the best way to achieve optimum Best Management Practice (BMP) selection, design, and placement in the landscape, thereby maximizing Clean Water Fund (CWF) benefits. To that end, it is critical to train new staff, create modeling protocols for new BMPs, refine and calibrate models, and test ever-advancing modeling applications.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The goal of this project is the continued development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL. The overall strategy will be used to help establish a path towards achieving the required reductions of turbidity/TSS.
The purpose of this effort is to create an educational video that will “bring to life” geo-scientific information related to groundwater movement in southeast Minnesota. This video will be used by the Minnesota Pollution Control Agency (MPCA), Minnesota Department of Agriculture (MDA) and other regional partners to help explain the local geology and related groundwater movement. It is anticipated that the video will be used at meetings and other events related to water resource management and natural resource issues. In addition, three stand alone high resolution graphics will be created.
This project will apply the Sunrise River watershed computer model generated under previous projects to selected scenarios of land-cover and land-management changes. The watershed model calibrated to conditions in the late 1990s will form the initial baseline against which all other model runs will be contrasted. Scenarios to be run will include changes in future land cover, agricultural practices, urban practices, and natural resource management.
This project will complete a chloride management plan which will lay out a strategy for addressing chloride impacts to our surface waters for the 7-county metropolitan area. This chloride management plan will satisfy EPA requirements for impaired waters, address waters not yet listed, and develop a strategy to protect waters that are currently meeting the water quality standards.
This project will provide the MPCA and all local partners in the Twin Cities Metropolitan Area (TCMA) the information and tools necessary to improve and/or maintain water quality with respect to chloride for the 7-county metropolitan area during the winter maintenace period.
This project will provide modeling services to support the completion of the Typo Lake and Martin Lake Excess Nutrients TMDL report. A Total Maximum Daily Load (TMDL) report quantifies pollutant levels, identifies sources of pollution, and proposes ways to bring water quality back to an acceptable level.
This project will collect up to one year of water quality and stream flow information on Kelle’s Coulee to aid in the development of the Valley Branch Watershed District Restoration and Protection study. The information being collected by the Washington Conservation District will be used in developing the models necessary to complete the TMDL for Kelle’s Coulee.