An interagency workgroup is developing recommendations for best practices and policies for water reuse in Minnesota. Recommendations will include both regulatory and non-regulatory approaches to successful implementation of water reuse. The workgroup will evaluate current regulations, practices, and barriers, and quantify and determine acceptable health risks associated with water reuse applications. The University of Minnesota is collecting and analyzing field data for use in targeting Minnesota-specific risks.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
Great River Energy (GRE) operates a power plant in the City of Elk River which generates electricity by incinerating municipal solid wastes. The plant is located proximate to the City of Elk River wastewater treatment plant (WWTP). This project will result in a corresponding reduction of groundwater use by GRE.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will improve our understanding of the sources of sediment (turbidity), and the processes which deliver sediment to river channels. This project will address a suite of emerging questions regarding contributions and causes of non-field sediment, thereby providing watershed managers with a better understanding of how to manage these sediment sources.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will provide a shared working definition and principles for civic engagement, that enable state agencies to more effectively, strategically and collaboratively manage the social dimension of Minnesota’s water resource management efforts . The agencies included in the project are BWSR, MDNR, MDA, MDH and MPCA. The consultant and project participants will develop recommendations that will better enable policy and decision makers, CWF teams, the Clean Water Council and others to make informed decisions surrounding civic engagement efforts.
This project will determine the magnitude and sources of pollutants in Little Rock Creek and will estimate the reductions in loadings that are needed in order for the stream reaches to support cold water fish assemblages and attain water quality standards.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
This project will determine the magnitude and frequency of contamination from endocrine active compounds (EAC's) and other contaminants of emerging concern in shallow groundwater in non-agricultural areas of Minnesota. EACs and other contaminants of emerging concern in this study include compounds typically found in waste water, including, pharmaceutical compounds, antibiotics, and hormones. This project supports the third phase, including laboratory analysis of samples for an additional 80 wells to be sampled by MPCA staff.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
Development of Target NPS loading rates along with a pollutant source allocation tool for assessing and quantifying source allocations for impaired stream reaches for use in the TMDL development.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
Appropriations from the Clean Water Fund allow the Minnesota Department of Health to expand and improve the way groundwater and drinking water protection is implemented at the local level. In 2015, $300,000 was allocated to update wellhead protection areas within groundwater management areas. From 2016 onward, funding will be dedicated to the Groundwater Restoration and Protection Strategies (GRAPS) initiative which will provide groundwater and drinking water information and management strategies on a HUC 8 watershed scale.
The objective of this project is to build on previous efforts aimed at determining the public health risk due to virus contamination in Minnesota groundwater. The Minnesota Department of Health will examine the occurrence of viruses in non-disinfecting groundwater sources in Minnesota as well as evaluate the association between source water virus occurrence and community acute gastrointestinal illness.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project will develop a reasonable statewide estimate of recharge using the Soil-Water-Balance (SWB) Code (Westenbroek and others, 2010), validate the simulation results, and conduct a parameter sensitivity analysis to identify the most sensitive model parameters. For the purposes of this application of the SWB application, comparing the simulation results will be conducted on selected watershed basins in the state against previously established recharge estimates.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds. Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support. Biological and Water Chemistry Stream Monitoring: Monitoring to assess the conditions of streams in each watershed.
This project supports monitoring and assessment activities by Minnesota Pollution Control Agency (MPCA) Environmental Outcomes staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities. The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project will provide an interpretive assessment of nitrogen concentrations in Minnesota rivers and streams, including spatial and temporal trends based on historical data sets. The trends analyses will provide information useful for evaluating nitrogen reduction efforts in the past couple of decades.
This project will gather watershed data necessary for the development of a Watershed Restoration and Protection Strategy with parameter-specific targets that will maintain or improve water quality in the Rum River Watershed. Local Partners will lead various portions of this project and a hired onsultant will be subcontracted to write selected TMDL protection plans.
The Minnesota Soil Survey is an ongoing effort by the Board of Water and Soil Resources (BWSR) in cooperation with the U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) that is systematically collecting and mapping data pertaining to soil types and other soil properties in each county of the state. Soils data is used by governments, farmers, and other businesses for a number of purposes from protection and restoration of soil, water, wetlands, and habitats to agricultural soil management to building construction.
MPCA will administer funding to eligible Local Governmental Units to use MPCA-approved Advanced Inspectors to conduct work in accordance with Minn. Rules 7080, 7081, and 7083, which requires proper location, design, installation, use and maintenance of an individual subsurface sewage treatment system (SSTS) with a design flow of 2,500 gallons per day or more that protects the public health, safety, general welfare, and the environment by the discharge of adequately treated sewage to the groundwater. Multiple contracts will be awarded.
The goal of this project is to update and revise the Twin Cities Metro Area (TCMA) Chloride Management Plan to a Statewide Chloride Management Plan (CMP). The Statewide CMP will provide stakeholders the information and tools necessary to improve and/or maintain water quality with respect to chloride.
The goal of this project will be to research and develop statewide winter maintenance best management practices (BMPs) for inclusion in the Statewide Chloride Management Plan and Winter Maintenance Assessment tool (WMAt). The WMAt is a necessary technical resource and planning tool for stakeholders and permittees to implement the chloride reduction strategies described in the Statewide Chloride Management Plan.
This project will further assess the water quality within Brown County by monitoring its rivers, streams, ditches and other waterbodies. This project will also be working in cooperation with individual volunteers to perform grab samples and visual assessments of seven waterbodies throughout Brown County.
This project will improve water management in the State of Minnesota. The result will be a water management tool that can be used by the Minnesota Pollution Control Agency (MPCA) to determine low flow statistics when establishing permit discharge limits and by the Minnesota Department of Natural Resources (MDNR) to help in water appropriations and permitting. This tool will also be used by watershed districts in understanding and quantifying the State's water budget, the Nature Conservancy in its Ecological Limits of Hydrologic Alteration (ELOHA) process, and the U.S.
The final outcome of this project will be a chloride management plan which will lay out a strategy for addressing chloride impacts to our surface waters for the 7-county metropolitan area. This chloride management plan will satisfy EPA requirements for impaired waters, address waters not yet listed, and develop a strategy to protect waters that are currently meeting the water quality standards. This management plan will also include implementation activities for reducing chloride to TCMA waters as well as identify high priority areas to target implementation activities.