The occurrences of contaminants including antibiotics, other pharmaceuticals, and personal care products in the environment have gained increasing attention in recent years because of their potential health and ecological impacts. However, serious gaps remain in our understanding of these contaminants and the significance of the threats they may pose, such as to drinking water. Through this appropriation scientists at the University of St.
Endocrine-disrupting contaminants such as environmental estrogens have been found and studied in large lakes and streams and shown to exist at concentrations that have adverse effects on wildlife. However, very little is known about the sources and effects of environmental estrogens in small, shallow lakes. Preliminary data suggests that these compounds are present in shallow lakes and have an effect on the survival and reproduction of wildlife. Researchers at the University of St.
Minnesota supports over 14 million acres of cropland in grain production. Almost 600,000 tons of synthetic nitrogen fertilizers are needed annually to maintain productivity on this land, which requires the equivalent of 3,000,000 barrels of oil and costs farmers over $400 million dollars per year. This amount of fossil fuel use results in a significant amount of greenhouse gas emissions, while the absence of fossil energy resources in the state means that these synthetic nitrogen fertilizers must be imported into Minnesota from other states and overseas.
The groundwater contained in confined glacial aquifers provides clean drinking water to many Minnesota residents. An important factor affecting the long-term sustainability of these aquifers is how water infiltrates through clayey deposits of overlying glacial till, which act as barriers to contaminants but also limit water flow and aquifer recharge. Very little is actually known about the properties and infiltration of water through till, which hinders the ability to accurately define the sustainability of these aquifers.
Zebra mussels are an aquatic species that are invasive in Minnesota and severely threaten native fish and other aquatic species by disrupting food webs and damaging spawning habitat. Their range continues to expand within Minnesota lakes and rivers, where they are spread through the transporting of water, vegetation, or equipment from an infested water body. Once established zebra mussels are very difficult to control and there is an immediate need for safe and effective control measures to reduce their impacts in the state.