The goal of the project is the development of an overall strategy for reduction of turbidity/TSS, with sets of sediment reduction initiatives and actions for various sources, to address the Minnesota River Turbidity TMDL and the South Metro Mississippi River TSS TMDL.
This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
This project will work with the MPCA to conduct watershed pollutant load monitoring at four sites in the Chippewa River watershed and one site in the neighboring Pomme de Terre River watershed . The Chippewa River Watershed Project (CRWP) team will also aid the MPCA in measuring and comparing regional differences and long-term trends in water quality. The goal is to collect quality data and complete load calculations for the five sites using the MPCA's established protocols.
The Winona County Soil and Water Conservation District (SWCD) developed this project to help reduce the amount of pathogens and nutrients generated by livestock from reaching surface waters and groundwater by targeting feedlots located in areas that are highly susceptible to groundwater pollution and sinkhole formation.
The Pomme de Terre River Association has targeted and identified specific areas and activities required for marked water quality improvement. This project will implement of 16 Water and Sediment Control Basins (WASCOBs), 28 Rain Gardens, 2 Shoreline/ Stream bank stabilization, 10 Waste Pit Closures, 1 Terrace Project, and the enrollment of 1900 acres into conservation practices. These practices in total will directly result in site-specific and watershed-dependent reductions of 17,801 tons of sediment and 17,784 pounds of phosphorous from entering surface waters yearly in the watershed.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in in the 67 counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
This project targets nutrient reductions within the Mayhew and Big Elk Lake watersheds. The Benton Soil and Water Conservation District will work with farmers in implementing a variety of conservation practices including, but not limited to cropland erosion control projects, riparian pasture management, and nutrient management and feedlot pollution control systems. These strategies were identified through Total Daily Maximum Load Studies.
Little Rock Lake experiences severe algae blooms due to excess phosphorus and these blooms are the worst known regionally. The goal of this project is to reduce algae blooms, improve water clarity, and avoid risk of drinking water contamination. The project will result in installing one farmer nutrient management project , four cover crops, two lakeshore buffer strips, six septic systems that also demonstrated an imminent threat to public health, six erosion control projects , one wetland restored, and one feedlot runoff control system.
The goal of the Pomme de Terre River Association (JPB) is to improve the local water resources within the watershed through targeted voluntary efforts and the building of strong relationships with local landowners, producers, and citizens. The Pomme de Terre River is currently not meeting state water quality for sediment. The purpose of this project is to strategically work towards a 53% sediment reduction goal at the mouth of the Pomme de Terre River based on a Watershed Restoration and Protection Strategy document.
A completed Total Maximum Daily Load (TMDL) study has identified mid to late summer phosphorus loading as a significant stressor to lakes and streams within the Big Elk Lake watershed. While this comprehensive study serves its role as the unifying document that identifies pollutants and sources, further work is required in order to develop site-specific Best Management Practices, design these practices, and oversee their implementation in order to reach clean water goals.
The Benton County Water Plan advisory committee has the goal of protecting groundwater resources in Benton County. One of the methods identified is to seal unused wells. In 2013, Benton Soil and Water Conservation District completed an aggressive campaign to identify unused wells. We used several sources to locate potential wells, completed site visits for many wells and collected site information to assisting in prioritizing limited cost share resources.
These funds are being used to systematically collect data and produce statistically valid estimates of the rate of soil erosion and tracking the adoption of high residue cropping systems in counties with greater than 30% land in agricultural row crop production. Designed to establish a long term program in Minnesota to collect data and produce county, watershed, and state wide estimates of soil erosion caused by water and wind along with tracking adoption of conservation measures to address erosion.
These funds will be utilized in cost-share for landowners to install Agricultural Best Management Practices following Little Rock Lake TMDL Implementation Plan. Example of projects include Feedlot Improvements, Waste Storage Facilities, Erosion Control BMPs, Filter Strips and Streambank Stabilizations. An estimated 830 pounds per year of phosphorus and 800 tons of sediment will be reduced annually.
The goal of this project is to achieve a 10% reduction in overall sediment discharge to the Mississippi River from the Northeast St. Cloud Drainage Area by installing one regional underground stormwater detention and treatment facility in partnership with a Neighborhood Redevelopment Project. The project will have over 16,000 cubic feet of water storage capacity treating 35 acres of stormwater runoff and is modeled to reduce sediment by 4.5 tons, which is 10% of the sediment reduction goal for this drainage area.
This project will fully fund three Nonpoint Engineering Assistance (NPEA) Joint Powers Board positions in cooperation with the NPEA Base Funding anticipated at $130,000 per year. This will allow a 2nd Professional Engineer to be retained in addition to a Lead Engineer and Technician. This 'accelerated' engineering previously was funded with BWSR Challenge Grants, and an EPA319 grant with corresponding BWSR CWF Matching Grant to handle the high workload associated with the large number of BWSR feedlot cost-share projects approved in South East Minnesota.
This project will extend two Feedlot Technical positions initially created and funded by a FY2011 CWF Feedlot Water Quality Grant that assess and help fix animal waste runoff from small feedlots. The technicians will work with and under the Technical Authority and priorities of the South East Soil and Water Conservation District Tech Support JPB lead Engineer. This project will enable more projects to be constructed resulting in a reduction of nitrogen, phosphorus and fecal coliform runoff into surface and ground water in South East Minnesota and the Mississippi River.
The Lower Shakopee Creek has proportionally higher pollutant contributions than any other tributary in the Chippewa River Watershed, and lower than average implementation of conservation practices. Establishing relationships with agricultural landowners is critical for overcoming barriers to participation. In order to make measurable pollutant reductions, Chippewa River Watershed Project staff will increase one-to-one landowner contacts, program promotion, and Best Management Practice site identification.
This project will accelerate production of County Geologic Atlases (part A). This is a set of geologic maps and associated databases for a county that facilitate informed management of natural resources, especially water and minerals.
CMSM opened its new permanent site with increased capacity to serve as an informal learning center that playfully engages children, families, and school groups in interactive experiences with the art and cultural heritage of southern Minnesota. With its current appropriation, CMSM is poised to strengthen its core as an institution that promotes arts and cultural heritage learning through continued
As Minnesota’s state Zoo, we are committed to ensuring that our programs are accessible to all our citizens – regardless of age, geographic location, disability or background. “Zoo Unlimited” is our community outreach and access initiative that unites a wide range of programs and policies designed to ensure every Minnesotan has unlimited opportunities to form stronger connections with the natural world. Legacy funds help us implement this program bridge barriers that keep people from connecting with all the Zoo has to offer.
CMSM will build upon the work that began with its 2015-16 appropriation by (1) Remediation and further development of exhibit areas that promote Arts & Cultural Heritage (ACH) learning (2) Expanding ACH learning opportunities for new audiences at off-site locations; (3) Engaging an outside Evaluation Consultant to help plan/implement strategies that meaningfully assess ACH learning outcomes and impacts; (4) Boosting the Museum’s capacity to serve more school/early learning groups.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project continues water plan activities from a 2007 Clean Water Legacy grant and initiates a multi-county project to restore hydrology and water quality in an impaired trout stream.The first goal of this project is to reduce the impacts of animal manure and fertilizer on surface and groundwater by installing low cost feedlot improvements and targeted manure management planning.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River