This project will obtain spatial and long-term pollutant load information from the Root River watershed in Southeast Minnesota. To accomplish this, the Fillmore Soil and Water Conservation District (SWCD) will assist the MPCA with water quality monitoring and annual pollutant loading calculations. Approximately 25 grab samples will be collected/site/year at 5 sites within the Root River watershed (totaling 125 grab samples/year). Annual load calculations for each site will be determined using the FLUX32 model.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
Peer Engineering, Inc. (Peer) will evaluate and recommend to MPCA groundwater monitoring staff prospective sites/locations for the installation of groundwater monitoring wells to evaluate contaminant/pollutant concentrations from various sources. Peer will oversee the installation of monitoring wells by retaining a state drilling contractor or preparing bid documents to retain well driller through the Department of Administration. Superfund staff will assist in the project by providing oversight of contractual requirements and provide technical assistance as needed.
The goal of this project is to use the We Are Water MN exhibit and their technical knowledge in relationship-building and storytelling to increase community capacity for sustainable watershed management in the Cannon River, Cedar River, Mississippi-Headwaters, Mississippi-Grand Rapids, Mississippi-Twin Cities, Red Lake River, Rum River and St. Louis River watersheds.
There are two main goals of this Cedar Basin HSPF project,
A. Overall development of the HSPF model in the Cedar Basin of Minnesota; and
B. Shell Rock River nutrient, DO , impairment modeling and TMDL completion.
This project will identify and compile existing nitrate data from groundwaters and surface waters in the Lower Mississippi Basin (LMB) generally and focus on the Root River Watershed. The purpose is to investigate the quantity and quality of existing nitrate data, and to organize it for use in comprehensive watershed strategy development (including assessment, TMDL computation and identification and study of nitrate sources and delivery mechanisms).
This project will build network and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection in Southeast Minnesota. The cohort will be administered through the Southeast Minnesota Water Resources Board (SE MN WRB) which is an area wide Joint Powers Board (JPB) established to help improve and protect the water resources of the area through coordinating local water planning efforts. This JPB has successfully administered water quality grants in the past that have positively impacted the water resources of this region.
This project will study the geologic controls on nitrate transport in southeast Minnesota's karst landscape and will also provide datasets for other projects over time.
The consultant LimnoTech will support response to Total Maximum Daily Load (TMDL) comments the peer review process, United States Environmental Protection Agency and public notice. They will then revise the TMDL document as needed and attend internal and external project meetings.
The goal of this project is to finalize the Lake Pepin Watershed phosphorus total maximum daily load (TMDL) report by using the existing information and documentation prepared under previous contracts to prepare one TMDL report that addresses the impairments on the mainstem of the Mississippi River. Information developed to date for draft TMDLs on the Minnesota River mainstem will be documented for later use by the Minnesota Pollution Control Agency.
Ninety percent of the land in Mower County is used for agriculture. The County ranks 10th and 13th in the State for corn and bean production, making much of the land vulnerable to erosion due to the planting of row crop. As a result, streams and ditches in the county see high sediment loads.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities within the described priority watersheds.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project will, over a 27 month period, fund a 0.75 Full Time Equivalent Conservation Planning Specialist position to update approximately 400 United States Department of Agriculture Highly Erodable Lands conservation plans on 40,000 acres in high priority areas within the Root River watershed. Currently, only 5% of the USDA conservation plans -approximately 40 per year - are being checked for compliance, and this project will increase that number to 150 or more per year.
The Root River Field to Stream Partnership is comprised of farmers, the Minnesota Department of Agriculture, the Minnesota Agricultural Water Resource Center, The Nature Conservancy, Fillmore and Mower County Soil and Water Conservation Districts, the Root River SWCD, Monsanto and academic researchers.Together, project partners are addressing the following key questions:What is the range of sediment, nitrogen and phosphorus losses from agricultural fields on real farms in southeast Minnesota?What are the long-term trends and relationships between specific farming practices and water qualit
The goal of this project is to complete the construction, calibration, and validation of an Hydrological Simulation Program FORTRAN (HSPF) watershed model for the Minnesota portions of three watersheds: Root River, Upper Iowa, and Mississippi River-Reno.
This project aims to mitigate flow and nitrate impacts from agricultural drainage to the Root River through the installation of a suite of multi-purpose drainage management practices.
TMDL project in the Root River Watershed that will support surface water assessment, analysis of data, interpretation of southeast Minnesota's karst landscape, stressor identification, TMDL computation, source assessment, and implementation planning.
The purpose of this project is to assess the amount of land in the Root River watershed that is treated by structural best management practices (BMPs); more specifically, Water and Sediment Control Basins. The 2016 Root River Watershed Restoration and Protection Strategy (WRAPS) report recommended reducing sediment loss from upland areas and reducing nitrate loading to streams from runoff. Understanding the location and density of these BMPs will is important for targeting future watershed protection and restoration efforts.
Approximately 70 percent of all Minnesotans rely on groundwater as their primary source of drinking water. Wells used for drinking water must be properly sealed when removed from service to protect both public health and Minnesota’s invaluable groundwater resources. The Minnesota Department of Health protects both public health and groundwater by assuring the proper sealing of unused wells.
Clean Water funds are being provided to well owners as a 50% cost-share assistance for sealing unused public water-supply wells.
The lack of sewage treatment in many small communities in Southeast Minnesota is causing surface water and groundwater pollution. Fourteen of these small communities will receive technical assistance provided by this project. These communities have community or individual straight pipes which are discharging raw sewage directly to the environment, surfacing sewage, or have sewage contaminating groundwater.
The goal of this project is to investigate nitrate transport and the sources of nitrate in karst for more effective implementation of best management practices that will reduce nitrate concentrations in ground and surface water.
This project will provide the monitoring of reaches where there are data gaps, incorporate new data and analyze relevant data, identify pollutant sources, hold a stakeholder meeting, and gather information towards the future development of a Draft Restoration (TMDL) and Protection Plan.
This project will extend, calibrate, and validate watershed models using the Hydrological Simulation Program - FORTRAN (HSPF) watershed model for the Mississippi Headwaters, Leech Lake, Pine, and South Fork Crow Watersheds.