The Stearns County Soil and Water Conservation District will hire an Accelerated Water Quality Technician to focus on projects in the Middle Sauk area showing the greatest pollution reductions. After identifying and prioritizing targeted sites with the highest pollution potential, the Stearns County SWCD will begin surveys and designs and complete them in a timely fashion while current implementation funds are available. The accelerated survey and design in Stearns County will relieve our natural resources of the current strain put on them by the environment and land use.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This monitoring project includes lake and stream monitoring and encompasses all of Cass County, and surrounding counties. The project will obtain water quality data for streams; in 2009, lakeshed assessments indicated that many surface waters throughout the county were data deficient. This project will address the need for sufficient data on a county-wide basis and fulfill the State’s intensive watershed monitoring program goals by obtaining water quality data at targeted lake and stream sites.
The primary objective of this workplan is to demonstrate the ability of the City of Paynesville to meet the current and future wastewater treatment needs and achieve beneficial use of wastewater effluent, to replace the use of groundwater.
This project will provide Stressor ID work and assistance for the development of a work plan for the Major Watershed Project. The Major Watershed Project will include a plan for civic engagement and outreach, with assistance from ten Local Government Units from the Crow Wing River Watershed.
This project will develop a TMDL for all impaired lakes within the Crow Wing Watershed by furthering data collection in the watershed, analysis of data, allocation calculations, and introducing outreach and stakeholder participation activities.
This project will initiate project coordination among project partners. It will enhance civic engagement and outreach endeavors activities to support Phase 2 of TMDL project. It will also support field activities associated with stressor ID work.
This project will conduct a 2017 revision of the South Fork Crow River, North Fork Crow River and Sauk River Watershed Hydrological Simulation Program FORTRAN (HSPF) models and review of the Pine River Watershed HSPF model.
This project will collect a complete Trophic Site Index (TSI) data set for Crow Wing County lakes and a complete data set for streams and rivers for the Intensive Monitoring Program (IMP). Crow Wing County, Cass County, Wadena County, Morrison County and Hubbard County are partnering to ensure that all target lakes and rivers within the Crow Wing River watershed are monitored efficiently.
This first year of the project will collect available data relevant to the TMDL development, determine the data sets best suited for the TMDL development. Gain a better understanding of the watershed and impaired lakes, and assessment of all potential sources (internal and external) of the causes of lake impairment. EOR will also review the data produced by the MPCA for the impairment assessment for each of the lakes during year 1 of the project.
The project goal is to conduct water chemistry monitoring at five subwatershed sites and two basin sites annually from 2016-2019, based on flow conditions, targeting runoff events using protocols defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
The purpose of this project is reduce peak flows in the North Fork of the Crow River through culvert sizing. Culvert sizing will typically result in smaller culverts, which will provide short-term temporary storage within channels and on adjacent lands upstream from road crossings. In addition to reducing peak flow rates, flood damage and downstream erosion, increased sediment and nutrient removal through extended detention time is expected.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project covers activities necessary to complete the major watershed restoration and projection project. The major objectives this project covers include contract administration, watershed coordination, stressor ID activities, identifying priority management zones, engage watershed citizens, and the creation of watershed restoration and protection plans.
This project will finalize HSPF watershed model construction by incorporating internal phosphorus loading in modeled lakes, run a suite of implementation scenarios and generate a GenScn project containing model output. The consultant will produce HSPF watershed models that can readily be used to provide information to support conventional parameter TMDLs. The consultant will deliver all modeling files for baseline and implementation scenarios and provide a GenScn project containing model output.
This project will complete a pollutant source identification and subwatershed information report and support the development of a Draft Restoration and Protection Plan (RAPP). It will also support the devlopment of a Implementation Plan that will identify target areas for BMP implementation for bacteria reductions.
The primary focus of this project is the collection of lake core samples to aid in the completion of lake TMDLs for Dean, Malardi & Fountain lakes. This work will enable completing tasks included in the North Fork Crow River Watershed Restoration & Protection Project (WRPP). Additional data collection is needed to update lake response models. This new data will provide a cohesive and comprehensive data collection for Dean, Malardi and Fountain lakes.
This project will evaluate and prioritize approximately 13,000 lineal feet of Lake Koronis shoreline for shoreline erosion and vegetative buffer condition. Those property owners with the most erosion, stormwater and vegetative buffer issues will be targeted to stabilize, infiltrate and buffer their shoreline. This project will also evaluate an additional 300 properties in the subcatchment area and target those properties that are best able to capture and treat stormwater from impervious surfaces.
The Middle Fork Crow River Watershed District is home to many natural resource organizations, all of which have a vested interest in the quality of local and regional resources. The District will provide financial assistance in the format of sub-grants to local partners to implement Best Management Practices to improve water quality.
Diamond Lake and its neighboring lakes feature numerous public water accesses, resorts, parks, and trails and are supported by the recreational and aesthetic values that good water quality provides. In 2006, Diamond Lake was placed on MPCA's List of Impaired Waters. Improving water quality in Diamond Lake to meet state standards is a top-ranking priority for the district.
The Sauk River Watershed District (SRWD) is the drainage authority for Stearns and Pope Counties. The SRWD manages 12 public drainage systems totaling over 90 miles. The majority of the public systems provide drainage for agricultural land uses and were constructed in the early 1900s.
This leadership workshop series will provide the participants (citizen leaders) with knowledge, skills, processes and tools that can help to strengthen their current efforts and nurture new ones.
The Crow Wing River Watershed consists of approximately 1,959 square miles in the north to north central portion of the Upper Mississippi River Basin in Central Minnesota. The watershed encompasses all or parts of Becker, Cass, Clearwater, Crow Wing, Hubbard, Morrison, Otter Tail, Todd and Wadena Counties. The dominant land use within the watershed is forested (41%), agriculture (32%), grass, shrub and wetland make up 17%, water (7%) and urban (3%).
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of three major watersheds: the Crow River/North Fork Crow River, the South Fork Crow River, and the Sauk River.
This project will support construction of three watershed framework models built using the Hydrologic Simulation Program FORTRAN (HSPF). These executable models will simulate hydrology at the subbasin scale. An HSPF model will be built for each of these major watersheds: Crow Wing River, Redeye River, and Long Prairie River.
This project will finalize HSPF watershed model construction and complete the calibration/validation process for the following three watersheds: North Fork Crow River, South Fork Crow River, and Sauk River.
This project will continue HSPF watershed model construction beyond the initial framework development. The consultant will add representation of point source discharges to the model. The consultant will also compile flow data for the purposes of calibration and validation. Finally, an initial hydrologic calibration will be performed and submitted for approval.
The Middle Fork Crow River Watershed District will conduct a river assessment to determine the scope of eroding riverbanks and a stormwater modeling project to identify targeted locations for stormwater management. The river assessment will: 1) verify that streambank erosion is the major contributor of pollutants, including sediment, Phosphorus, and Nitrogen; 2) catalog and quantify the erosion, and; 3) provide an assessment of reductions that could be achieved using specific solutions.
This project aims to improve water quality in the Middle Fork Crow River, as outlined in Middle Fork Crow River Watershed District 10 year Comprehensive Plan. This will be done by evaluating current water quality impacts, implementing best management practices already in the planning stages, and by promoting BMP’s to landowners with the support of a low interest loan program.
The purpose of this monitoring project is to maintain water quality data collection, build upon existing data for Phase II of the Intensive Watershed Monitoring approach, and develop a better understanding of what impacts the rivers located in central Minnesota specifically in the North Fork Crow Watershed.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, and fieldwork expenses associated with monitoring and assessment activities.
Lake Monitoring: Lakes are monitored for nutrients, clarity and other information to provide the data needed to assess the aquatic recreation use support.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
This project supports monitoring and assessment activities by MPCA EAO staff and includes lab analysis, equipment, fieldwork, data management, and interpretation expenses associated with monitoring and assessment activities.The ambient groundwater monitoring network describes the current condition and trends in Minnesota's groundwater quality.
Minnesota Erosion Control Association (MECA) will offer three one-day training session intended to educate permittees on the requirements of the Municipal Separate Storm Sewer System (MS4) permit. The focus of these workshops will be on conducting inspections and various hot topics.
The District is seeking to further its goals of meeting multipurpose drainage management requirements under its obligations as a 103E drainage authority. Judicial Ditch 1 is the largest system in the District, and proportionally one of the largest contributors of sediment and nutrients to the downstream reaches of the North Fork Crow River.
There is one lake and three streams in the North Fork Crow River Watershed District impaired by excess nutrients and impaired biotic communities. The Watershed Restoration and Protection Strategies have identified large areas and subwatersheds that have the potential to contribute high pollutant loads to the streams and lakes throughout the watershed. This Subwatershed Assessment study will evaluate three high loading subwatershed catchments in the North Fork Crow River Watershed.
This project will support the review of all public comments submitted for the North Fork Crow River TMDL and make appropriate edits and changes to the draft TMDL based on MPCA guidance.
The goal of this project is to add dual endpoints to the turbidity section of the North Fork Crow TMDL so that it addresses the proposed TSS standards.
The North Fork Crow River Watershed District will develop an inventory and inspection database for 103E ditches under their drainage authority. The district will acquire a database software solution to conduct field inspections and to track ditch maintenance projects throughout the district. This software will be used to facilitate statutory compliance including developing a process for completing annual inspection and reporting requirements.