Two large, actively eroding gullies located a few miles apart in Amador Township are contributing tremendous loads of phosphorus and sediment to the St. Croix River. One gully (Gully A) includes a major agricultural gully, severe road erosion, and sediment deposits of a foot or more thick in a state park. The second gully (Gully B) is over 4 feet deep, adjacent to a road, and is an annual problem. Stabilizing these two gullies will greatly reduce the sediment and phosphorus loading to the St. Croix River, which will help meet the reduction goal of the Lake St.
Using a previous escarpment gully project as a model, the Chisago Soil and Water Conservation District will complete a similar inventory of actively eroding gullies along the Lower Sunrise River from the Kost Dam south to the confluence with the St. Croix, which includes the North Branch of the Sunrise, Hay Creek, and the Sunrise River main branch. There are major erosion issues along this stretch of river, no organized and efficient way to begin work in the area. The inventory report will provide the missing link.
The Chisago Soil and Water Conservation District has been successful in implementing Best Management Practices in certain targeted locations within the county, including the prioritized and assessed areas of Chisago City, Lindstrom, and Center City. However, there are many areas that want to implement conservation projects but aren't within targeted areas. This award will empower community partners, especially lake associations, to award grants for rain gardens, shoreline buffers, and other worthwhile projects to improve water quality.
The Chisago Soil and Water Conservation District (SWCD) has had such great success implementing gully stabilization projects along the St. Croix River escarpment that all of the current grant funding has been encumbered towards projects. Two large gully projects, one in the City of Taylors Falls and a second nearby in Interstate State Park, are lined up and ready to go as soon as funding is secured. Both of these gullies are large and have been actively eroding for many years, depositing large loads of sediment and phosphorus directly into the St. Croix River.
Goose, East and West Rush Lakes are not meeting state water quality standards due to excessive phosphorus. These are three of the worst lakes in Chisago County in terms of water quality, yet also some of the most heavily used lakes for recreation. The quality of the water in the St. Croix River is directly influenced by the poor quality water leaving East Rush, West Rush, and Goose Lakes.
The AgBMP Loan Program provides needed funding for local implementation of clean water practices at an extremely low cost, is unique in its structure and is not duplicated by any other source of funding.The AgBMP loan program provides 3% loans through local lenders to farmers, rural landowners, and agriculture supply businesses.
This project will provide condition monitoring and problem investigation monitoring at the following sites.
Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek.
Minnesota River: Tributaries include Eagle Creek,Riley Creek, and Valley Creek tributary to the St. Croix River
Bone Lake and upstream Moody Lake are the headwaters of the Comfort Lake-Forest Lake Watershed District northern flow network, and as such, their water quality sets the stage for downstream waters, particularly Comfort Lake, the Sunrise River, and ultimately Lake St. Croix. This project proposes the implementation of six wetland restorations located along the tributary identified as the single highest source of phosphorus loading to Bone Lake. These wetland restorations are estimated to reduce watershed phosphorus loads to Bone Lake by 50 pounds per year.
This project addresses the identified need for an Implementation Plan that provides an overall roadmap for the effort it will take to meet the Carnelian Marine St. Croix Multi-Lakes Total Maximum Daily Load (TMDL). An Implementation Plan will be developed, with involvement of the Project Partners and stakeholder groups, that sets forth prioritized strategies for attaining the TMDL and a method for tracking the progress of those efforts. The Implementation Plan will be restoration-focused, but will include protection-oriented information/actions as well.
Continued TMDL project to support next phases associated with completion of TMDL's for ten lakes in the Carnelian Marine Saint Croix Watershed District (CMSCWD). Ten lakes are; East Boot, Fish, Goose, Hay, Jellum’s, Long, Loon, Louise, Mud and South Twin.
In 2010, Legislation allocated Clean Water Fund (CWF) dollars to the Anoka Conservation District to initiate an 11 county metro subwatershed assessment program. The purpose of subwatershed assessments is to improve water quality, increase groundwater recharge and reduce runoff volumes. These goals are achieved by identifying opportunities in the subwatersheds most contributing to the degradation of the high priority water bodies and developing designs for Best Management Practices (BMPs) that treat stormwater runoff.
This project is for Cycle 2 of the Intensive Watershed Monitoring (IWM) process for the Lower St. Croix Watershed. Seven stream sites will be monitored by the Isanti Soil and Water Conservation District (SWCD), Anoka Conservation District, and Chisago SWCD. Sampling will be conducted in 2019 and 2020 and Chemistry and field observation data will be taken.
In 2011, the Chisago Soil and Water Conservation District (SWCD) received a Clean Water Fund (CWF) grant to inventory active gully erosion sites along the St. Croix River from the Wild River State Park entrance south to the Chisago/Washington county line. This inventory is now being used to contact landowners with active and severe gully erosion to begin the process of developing a plan correct the problems using Best Management Practices (BMPs).
The Contractor will assist in planning and executing the regular meetings of the St. Croix River Basin Team, including providing minutes of the meetings. Assist in the functioning of the priority issue subcommittees. Respond to public notices for re-issuances of NPDES permits, EAWs and other pertinent public notices, and participate in prioritized public meetings with local governmental units and water planning organizations.
Chisago County will coordinate up to three community dialogue meetings to inform its water planning decisions. The goal of the meetings will be to provide safe, productive and effective venues for citizens to become authentically engaged in the water planning process. The outcome of this Civic engagement work with Chisago County and their county water planning process will be a more engaged public in the County Water Planning Process.
This project will support a civic engagement cohort that will be offered in southwest Minnesota to foster partnering and build capacity of local government, organizations, and residents for effective civic engagement in water protection and restoration. This project will also build networks and the skill set of local resource professionals to do effective civic engagement work for water restoration and protection. The cohort will be administered through the Minnesota River Board (MRB), established in 1995 with a goal of focusing water management efforts on the local level.
This project will support the necessary activities for improving the water quality and biological community by reducing nutrients, sediment levels and managing in-stream habitat within the Goose Creek 10-digit HUC Watershed. This restoration and protection plan will identify pollutant load reduction estimates and management strategies that will be used to obtain the TMDL goals outlined in the plan.
This project will complete a Watershed Restoration and Protection Plan for the Lower St. Croix River that provides quantitative pollutant load reduction estimates and a set of pollutant reduction and watershed management strategies to achieve water quality standards for all impairments within the watershed, and that are understood and adoptable by local units of government and other stakeholders.
This project will support the development of whole farm conservation plans for ten (10) agricultural producers within the Sunrise River Watershed. The conservation plans will be used by the farmer and the Chisago SWCD to develop an action plan to address the resource concerns identified as part of the AgEQA program. The overall goal of the program is to prioritize conservation practices that will improve the overall water quality of the Sunrise River.
This project will complete spatial and temporal revisions , recalibration and validation of 7 watershed HSPF models. These fully functioning calibrated validated executable models will simulate hydrology, sediment (sand, silt, and clay), temperature, phosphorus, nitrogen, dissolved oxygen, biochemical oxygen demand, and algae at the 12-digit HUC subbasin scale (or finer).
This project will develop and organize a first- stage civic infrastructure pilot in Kanabec County, within the membership of the PICKM (Pine, Isanti, Chisago, Kanabec, and Mille-Lacs) Alliance, and with other organizations in the St. Croix Basin. The work will be grounded in the need for sustainable citizen engagement in water quality management. Civic leaders participating in this project will build their own skills for organizing people and working in partnership with Kanabec County SWCD staff and the St. Croix Basin Team to achieve water quality goals.
TMDL project in the Chisago Lakes Lake Improvement District that will develop a watershed based plan and provide strategies for water quality and aquatic ecosystem management, restoration, and protection within Sunrise River Watershed. This project will also aid in understanding the Phosphorus loading to Lake St. Croix.
This project will provide baseline data through water monitoring, recording and analyzing the results of six unassessed rivers/tributaries, three unassessed lakes and five storm water outlets in the city of Mora which drain to the Snake River; promote and implement approved BMP’s.
Implementation activities proposed as a part of this project include water quality monitoring, biotic surveys, sediment core sampling, mechanical treatment of curly-leaf pondweed (in accordance with regulations and permitting), an iron-enhanced sand filter, with a high capacity multi-stage outlet weir and 40,000 pounds of iron filings and stakeholder involvement in the design process and educational presentations.
The Discovery Farms program is a farmer-led effort to gather information on soil and nutrient loss on farms in different settings across Minnesota. The mission of Discovery Farms Minnesota is to gather water quality information under real-world conditions.
The goal of this project is to adapt and expand the existing successful Master Water Stewards program to engage citizens and catalyze clean water projects in suburban, exurban and rural communities of Washington and southern Chisago Counties. As part of this project, 20 citizens' stewards will be recruited and trained to work in partnership with the Washington Conservation District and area watershed management organizations to implement clean water projects in identified priority areas.
This project will develop an enhanced street sweeping plan for the City of Forest Lake that optimizes phosphorus removal from increasing sweeping frequency with the cost of additional sweeps. In addition, this project will identify road-specific street sweeping timing and frequency, quantify expected phosphorus load reductions, itemize costs of enhanced street sweeping, and recommend funding options to the City of Forest Lake.
The goal of this project is to extend the existing HSPF models through 2012 in the Chippewa Watershed (07020005) and Hawk-Yellow Medicine Watershed (07020004) to incorporate recent monitoring data to support current MPCA business needs and sediment source investigations.
This project will complete spatial and temporal revisions of 6 Hydrologic Simulation Program FORTRAN (HSPF) models, the recalibration and validation of 7 watershed HSPF models, and the revision of the drainage network and point source representation of the Pomme de Terre HSPF model.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models simulate sediment erosion and transport, however these models periodically need to be adjusted to be consistent with the most recent sources of information regarding sediment distribution and loading rates. The goal of this project is to refine the sediment source partitioning and simulation in the Minnesota River basin using all relevant available sources of information.
The Minnesota River Basin Hydrological Simulation Program FORTRAN (HSPF) models, which simulate flow and pollutant transport, need to be refined to be consistent with the most recent external sources of land use, hydrologic response, and surface flow attributions. The primary goal of this work is to refine the hydrologic calibration in the Minnesota River basin.
This project will develop an inventory of the Chisago County public ditch system and significant tributaries, including record searching and field verification to identify and confirm locations of existing public ditches. This project will also identify, inventory and evaluate functions, purpose, and necessity of the Chisago County ditch system and determine legal status of ditches, rights, and responsibilities as defined in Minnesota Statutes 103E.
This project will develop an Implementation Plan for restoring Lake St. Croix and impaired waters within the contributing watershed, and protect waters currently attaining water quality standards.
This project will provide information about the amount and sources of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and reduce the amount of phosphorous flowing into Lake St Croix by implementing phosphorous reduction activities. The St Croix River Association (SCRA) will coordinate with the St. Croix Basin Water Resources Planning Team (Basin Team) on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St. Croix portion of the St.
The purpose of this project is to gain additional information about the amount of phosphorous flowing into Lake St Croix by implementing additional water quality monitoring and/or to reduce the amount of phosphorous entering Lake St Croix by the implementation of projects that will reduce phosphorus loadings. The St. Croix River Association (SCRA) will coordinate with a subgroup of the St. Croix Basin Water Resources Planning Team and other local resource experts on the identification and funding of comprehensive water monitoring and phosphorus reduction activities in the Lake St.
This project will provide condition monitoring and problem investigation monitoring at the following sites. Mississippi River: Tributaries include Bassett Creek, Cannon River, Crow River, and Minnehaha Creek. Minnesota River: Tributaries include Eagle Creek, Riley Creek, and Willow Creek. St. Croix River: Tributary includes Valley Creek.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
This project addresses five reaches of the Minnesota River that have aquatic recreation impairments as identified by high concentrations of E. coli. The project will describe the water quality impairments, complete pollutant source assessments, establish loading capacities and allocations for the impairments, and develop implementation strategies.
Moody Lake is the headwaters of the Comfort Lake-Forest Lake Watershed District northern flow network, and as such, its water quality sets the stage for downstream waters, particularly Bone Lake, Comfort Lake, the Sunrise River, and ultimately Lake St. Croix. A multi-year diagnostic and implementation feasibility study was conducted in the Moody Lake watershed to prioritize nutrient sources, target cost-effective BMPs, and estimate the measurable phosphorus reductions that will be achieved through implementation of these projects.