The Aitkin County Soil and Water Conservation District will partner with the Minnesota Pollution Control Agency and local volunteers to conduct water quality monitoring in high priority areas of the Upper Mississippi River (Brainerd) Watershed. Four lakes will be sampled, including Sheriff, Rabbit, French, and Section Twelve. Four stream/river sites will be monitored including the Rice River (2 sites), Ripple River, and Sissabagama Creek. Through this effort we will obtain information that will be useful in assessing the health of this watershed.
The project will include lake monitoring on seventeen lakes found in the Mississippi River - Brainerd watershed in East Central Crow Wing County (CWC). The project will be conducted in an effort to gain data on these data-deficient lakes. One of the goals of the CWC Local Comprehensive Water Plan (CWP) is to establish a countywide Comprehensive Monitoring Plan (CMP). Surface water assessment monitoring will enable state 303(d) and 305(b) assessments and provide a better understanding of these lakes.
The Drinking Water Contaminants of Emerging Concern (CEC) program identifies environmental contaminants for which current health-based standards currently do not exist or need to be updated, investigate the potential for human exposure to these chemicals, and develop guidance values for drinking water. Contaminants evaluated by CEC staff include contaminants that have been released or detected in Minnesota waters (surface water and groundwater) or that have the potential to migrate to or be detected in Minnesota waters.
Minnesota Pollution Control Agency (MPCA) Watershed Pollutant Load Monitoring Network (WPLMN) requests assistance from local partners to collect samples and field data at designated stream monitoring sites for the purpose of assessing water quality and calculating annual pollutant loads.
The goal of this project is to construct, calibrate, and validate three HSPF watershed models. The project will result in HSPF models that can readily be used to provide information to support conventional parameter TMDLs. The models are expected to generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The goal of this project is to construct, calibrate, and validate five Hydrologic Simulation Program FORTRAN (HSPF) watershed models. The outcome will be HSPF models that can readily be used to provide information to support conventional parameter TMDLs. These models will generate predicted output timeseries for hydrology, sediment, nutrients, and dissolved oxygen which are consistent with available sets of observed data.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The St. Louis River Area of Concern (SLRAOC) conservation partners are focused on removing Beneficial Use Impairments (BUI) in the estuary and eventually delisting the SLRAOC. Cooperative efforts between multiple resource agencies and regional stakeholders have identified a host of restoration objectives, developed project support activities, and partially secured funding that includes a state commitment through the Minnesota Clean Water Fund.
The project goal is to conduct water chemistry monitoring at four subwatershed sites and one basin site in 2016, 2017, 2018 and 2019. Water chemistry monitoring will be conducted at a wide range of flow conditions with emphasis of collecting samples during periods of moderate and high flows after runoff events, as defined in the Watershed Pollutant Load Monitoring Network (WPLMN) Standard Operating Procedures and Guidance. The data collected will be submitted to the Minnesota Pollution Control Agency (MPCA) and used in the FLUX32 model for calculating pollutant loads.
The objective of this sampling plan is to quantify the inputs and outputs of methyl-mercury in the St. Louis River. Mercury can be bound to organic carbon or suspended solids; therefore, it is necessary to determine loadings of them as well. To get loadings, this sampling plan includes event and base flow monitoring at key tributaries to the St. Louis River and at stations within the St. Louis River.
The goal of this project is to provide drilling services for the Sentinel Lakes Groundwater/Surface Water Interaction Network. The three new wells will be used for monitoring the interaction between groundwater and surface water in Lakes Shaokatan and Bear Head. Groundwater/lake water interactions are not well understood, and in order to produce accurate and useful Total Maximum Daily Load watershed investigations and impairment remediations, the MPCA must understand how groundwater affects lake water quality.
The goal of this project is to conduct water quality monitoring at the ten lakes within the Todd County portions of the Mississippi River Brainerd and the one lake within the Todd County portion of the Mississippi River Sartell. Sampling will be done once per month between May 2016 and September 2016 and then again once per month May 2017 through September 2017.